Suppr超能文献

马其顿共和国与欧洲桤木(Alnus glutinosa)相关的奥尔德黄化植原体的首次报道

First Report of Alder Yellows Phytoplasma Associated with Common Alder (Alnus glutinosa) in the Republic of Macedonia.

作者信息

Atanasova B, Spasov D, Jakovljević M, Jović J, Krstić O, Mitrović M, Cvrković T

机构信息

"Goce Delčev" University - Štip, Faculty of Agriculture - Strumica, Goce Delčev bb, 2400 Strumica, Macedonia.

Institute for Plant Protection and Environment, Department of Plant Pests, Banatska 33, 11080 Zemun, Serbia.

出版信息

Plant Dis. 2014 Sep;98(9):1268. doi: 10.1094/PDIS-03-14-0315-PDN.

Abstract

Alder yellows phytoplasma (AldYp) is classified as a member of the 16SrV-group of phytoplasmas and is closely related to Flavescence dorée (FD), a quarantined pathogen of economic importance affecting vineyards across Europe. AldYp is associated with common (Alnus glutinosa) and grey alder (A. incana), and has been reported in France, Italy, Germany, Austria, Switzerland, the Baltic region, Serbia, and Montenegro (1,2,4). For Macedonian vineyards, so far, neither infection of grapevine with 16SrV-group of phytoplasmas nor the presence of the main FD phytoplasma vector, Scaphoideus titanus, has been recorded. However, the presence of FD-related phytoplasma was detected in wild Clematis vitalba. In September and October 2013, leaves with petioles from A. glutinosa exhibiting leaf discoloration and yellowing were collected from two sites (41°23'43″ N, 22°54' E and 41°23' N, 22°53' E) in southeast Macedonia near the village of Smolare (Strumica district). Eight samples were collected from each site. Leaves of six asymptomatic alder seedlings collected from the same sites served as a control. Nucleic acids were extracted from fresh leaf midribs and petioles using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Initial phytoplasma identification was carried out by nested PCR assay of the 16S rRNA gene, using universal primers P1/P7 and R16F2n/R16R2 followed by RFLP with MseI endonuclease (Fermentas, Vilnius, Lithuania), as previously reported (4). Characterization of detected phytoplasmas was performed by amplifying two genetic loci specific for the members of the 16SrV group phytoplasmas; the ribosomal protein gene operon (rp) using primers rp(V)F1/rpR1 and rp(V)F1A/rp(V)R1A (3), and the non-ribosomal metionine aminopeptidase (map) gene using primer set FD9f5/MAPr1 and FD9f6/MAPr2 (1). The PCR amplicons were sequenced and deposited in NCBI GenBank database under the accession numbers KJ605448 to 52 (map) and KJ605453 to 57 (rp). The obtained sequences were compared with reference sequences of the 16SrV-group phytoplasmas (1,3) using the neighbor-joining method in MEGA5 (5). The presence of phytoplasma was detected in 14 of 16 symptomatic alder samples, while all control plants tested negative. The MseI restriction profiles were identical among all 14 samples and with the reference strains of the 16SrV group phytoplasmas (EY1 - 16SrV-A, FD-C - 16SrV-C, and FD-D - 16SrV-D). The rp-based phylogeny enabled identification of four diverse phytoplasma strains among the AldYp strains from Macedonia. Three strains clustered within the rpV-E subgroup while one belonged to rpV-L subgroup. Phylogenetic analysis of the more variable genetic locus, map, showed the presence of five diverse phytoplasma strains. Four strains belonged to the map-FD2 (FD-D, FD92) cluster, while one grouped within the map-FD1 (FD70) cluster. To our knowledge, this is the first report of 16SrV phytoplasma group occurrence on alder in Macedonia. The significant similarity between AldYp strains and FD sensu stricto indicate the risk of pathogen exchange between the wild ecosystem and the grapevine (1). Alder trees naturally infected with the FDp-related strains could therefore represent a serious risk for FD outbreak in Macedonian vineyards if local S. titanus populations developed. References: (1) G. Arnaud et al. Appl. Environ. Microbiol. 73:4001, 2007. (2) T. Cvrković et al. Plant Pathol. 57:773, 2008. (3) M. Martini et al. Int. J. Syst. Evol. Microbiol. 57:2037, 2007. (4) S. Radonjić et al. Plant Dis. 97:686, 2013. (5) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.

摘要

桤木黄化植原体(AldYp)被归类为植原体16SrV组的成员,与葡萄黄化病(FD)密切相关,葡萄黄化病是一种具有经济重要性的检疫性病原菌,影响着欧洲各地的葡萄园。AldYp与欧洲桤木(Alnus glutinosa)和灰桤木(A. incana)有关,在法国、意大利、德国、奥地利、瑞士、波罗的海地区、塞尔维亚和黑山均有报道(1,2,4)。对于马其顿的葡萄园,到目前为止,尚未记录到葡萄感染16SrV组植原体,也未发现主要的FD植原体传播媒介葡萄叶蝉(Scaphoideus titanus)。然而,在野生铁线莲(Clematis vitalba)中检测到了与FD相关的植原体。2013年9月和10月,从马其顿东南部靠近斯莫拉雷村(斯特鲁米察区)的两个地点(北纬41°23′43″,东经22°54′和北纬41°23′,东经22°53′)采集了表现出叶片变色和黄化的欧洲桤木带叶柄叶片。每个地点采集了8个样本。从同一地点采集的6株无症状桤木幼苗的叶片作为对照。使用DNeasy植物微量提取试剂盒(Qiagen,德国希尔德)从新鲜叶片中脉和叶柄中提取核酸。如先前报道(4),最初通过对16S rRNA基因进行巢式PCR分析来鉴定植原体,使用通用引物P1/P7和R16F2n/R16R2,随后用MseI核酸内切酶(Fermentas,立陶宛维尔纽斯)进行RFLP分析。通过扩增两个对16SrV组植原体成员特异的基因座来对检测到的植原体进行特征分析;使用引物rp(V)F1/rpR1和rp(V)F1A/rp(V)R1A扩增核糖体蛋白基因操纵子(rp)(3),使用引物组FD9f5/MAPr1和FD9f6/MAPr2扩增非核糖体蛋氨酸氨基肽酶(map)基因(1)。对PCR扩增产物进行测序,并以登录号KJ605448至52(map)和KJ605453至57(rp)保存在NCBI GenBank数据库中。使用MEGA5(5)中的邻接法将获得的序列与16SrV组植原体的参考序列(1,3)进行比较。在16个有症状的桤木样本中,有14个检测到植原体,而所有对照植株检测均为阴性。所有14个样本的MseI酶切图谱与16SrV组植原体的参考菌株(EY1 - 16SrV - A、FD - C - 16SrV - C和FD - D - 16SrV - D)相同。基于rp的系统发育分析能够鉴定出来自马其顿的AldYp菌株中的四种不同植原体菌株。三个菌株聚集在rpV - E亚组中,而一个属于rpV - L亚组。对变异更大的基因座map进行系统发育分析,结果显示存在五种不同的植原体菌株。四个菌株属于map - FD2(FD - D、FD92)簇,而一个归入map - FD1(FD70)簇。据我们所知,这是16SrV植原体组在马其顿桤木上出现的首次报道。AldYp菌株与严格意义上的FD之间的显著相似性表明野生生态系统与葡萄之间存在病原菌交换的风险(1)。因此,如果当地葡萄叶蝉种群发展起来,自然感染FDp相关菌株的桤木树可能对马其顿葡萄园爆发FD构成严重风险。参考文献:(1)G. Arnaud等人,《应用与环境微生物学》73:4001,2007年。(2)T. Cvrković等人,《植物病理学》57:773,2008年。(3)M. Martini等人,《国际系统与进化微生物学杂志》57:2037,2007年。(4)S. Radonjić等人,《植物病害》97:686,2013年。(5)K. Tamura等人,《分子生物学与进化》28:2731,2011年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验