Department of Environmental Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States.
Environ Sci Technol. 2019 Apr 16;53(8):4364-4370. doi: 10.1021/acs.est.9b00765. Epub 2019 Mar 26.
A commercially available, 3D printer nanocomposite filament of carbon nanotubes (CNTs) and acrylonitrile-butadiene-styrene (ABS) was analyzed with respect to its VOC emissions during simulated fused deposition modeling (FDM) and compared with a regular ABS filament. VOC emissions were quantified and characterized under a variety of conditions to simulate the thermal degradation that takes place during FDM. Increasing the residence time and temperature resulted in significant increases in VOC emissions, and the oxygen content of the reaction gas influenced the VOC profile. In agreement with other studies, the primary emitted VOC was styrene. Multiple compounds are reported in this work for the first time as having formed during FDM, including 4-vinylcyclohexene and 2-phenyl-2-propanol. Our results show that printing 222.0 g of filament is enough to surpass the reference concentration for inhalation exposure of 1 mg/m according to the EPA's Integrated Risk Information System (IRIS). The presence of CNTs in the filament influenced VOC yields and product ratios through three types of surface interactions: (1) adsorption of O on CNTs lowers the available O for oxidation of primary backbone cleavage intermediates, (2) adsorption of styrene and other VOCs to CNTs leads to surface-catalyzed degradation, and (3) CNTs act as a trap for certain VOCs and prevent them from entering vapor emissions. While the presence of CNTs in the filament lowered the total VOC emission under most experimental conditions, they increased the emission of the most hazardous VOCs, such as α-methylstyrene and benzaldehyde. The present study has identified an increased risk associated with the use of CNT nanocomposites in 3D printing.
一种市售的 CNTs(碳纳米管)和丙烯腈-丁二烯-苯乙烯(ABS)3D 打印机纳米复合线材,就其在模拟熔融沉积建模(FDM)过程中的 VOC 排放情况进行了分析,并与常规 ABS 线材进行了比较。在各种条件下对 VOC 排放进行了定量和特征分析,以模拟 FDM 过程中发生的热降解。增加停留时间和温度会导致 VOC 排放的显著增加,并且反应气体中的氧含量会影响 VOC 分布。与其他研究一致,主要排放的 VOC 是苯乙烯。本工作首次报道了在 FDM 过程中形成的多种化合物,包括 4-乙烯基环己烯和 2-苯基-2-丙醇。我们的结果表明,打印 222.0 克线材就足以超过 EPA 的综合风险信息系统(IRIS)规定的 1 毫克/立方米的吸入暴露参考浓度。线材中 CNTs 的存在通过三种类型的表面相互作用影响 VOC 产率和产物比:(1)O 在 CNTs 上的吸附降低了可用于氧化主要骨架断裂中间体的 O;(2)苯乙烯和其他 VOCs 吸附到 CNTs 上导致表面催化降解;(3)CNTs 作为某些 VOC 的陷阱,防止它们进入蒸汽排放。虽然在大多数实验条件下,线材中 CNTs 的存在降低了总 VOC 排放量,但它们增加了最危险的 VOC 如α-甲基苯乙烯和苯甲醛的排放量。本研究确定了在 3D 打印中使用 CNT 纳米复合材料所带来的风险增加。