机械激活粘着斑激酶的结构和机制见解。
Structural and mechanistic insights into mechanoactivation of focal adhesion kinase.
机构信息
Lehrstuhl für Angewandte Physik, Nanosystems Initiative Munich and Center for Nanoscience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
出版信息
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6766-6774. doi: 10.1073/pnas.1820567116. Epub 2019 Mar 15.
Focal adhesion kinase (FAK) is a key signaling molecule regulating cell adhesion, migration, and survival. FAK localizes into focal adhesion complexes formed at the cytoplasmic side of cell attachment to the ECM and is activated after force generation via actomyosin fibers attached to this complex. The mechanism of translating mechanical force into a biochemical signal is not understood, and it is not clear whether FAK is activated directly by force or downstream to the force signal. We use experimental and computational single-molecule force spectroscopy to probe the mechanical properties of FAK and examine whether force can trigger activation by inducing conformational changes in FAK. By comparison with an open and active mutant of FAK, we are able to assign mechanoactivation to an initial rupture event in the low-force range. This activation event occurs before FAK unfolding at forces within the native range in focal adhesions. We are also able to assign all subsequent peaks in the force landscape to partial unfolding of FAK modules. We show that binding of ATP stabilizes the kinase domain, thereby altering the unfolding hierarchy. Using all-atom molecular dynamics simulations, we identify intermediates along the unfolding pathway, which provide buffering to allow extension of FAK in focal adhesions without compromising functionality. Our findings strongly support that forces in focal adhesions applied to FAK via known interactions can induce conformational changes, which in turn, trigger focal adhesion signaling.
黏着斑激酶(FAK)是一种关键的信号分子,调节细胞黏附、迁移和存活。FAK 定位于细胞与细胞外基质(ECM)附着的细胞质侧形成的黏着斑复合物中,并在附着于该复合物的肌动球蛋白纤维产生力后被激活。将机械力转化为生化信号的机制尚不清楚,也不清楚 FAK 是否直接被力激活,或者是在力信号的下游被激活。我们使用实验和计算单分子力谱来探测 FAK 的机械性质,并研究力是否可以通过诱导 FAK 的构象变化来触发激活。通过与 FAK 的开放和活跃突变体进行比较,我们能够将机械激活分配到低力范围内的初始断裂事件中。该激活事件发生在 FAK 在黏着斑的天然范围内的力下展开之前。我们还能够将力谱中的所有后续峰值分配给 FAK 模块的部分展开。我们表明,ATP 的结合稳定了激酶结构域,从而改变了展开的层次结构。使用全原子分子动力学模拟,我们确定了沿展开途径的中间体,这些中间体提供了缓冲作用,允许 FAK 在黏着斑中延伸,而不会损害其功能。我们的研究结果强烈支持这样一种观点,即通过已知相互作用施加于 FAK 的黏着斑力可以诱导构象变化,进而触发黏着斑信号。