用于肿瘤FFPE样本多重免疫荧光细胞表型分析和空间图谱分析的原位复合染色方法。

The InSituPlex Staining Method for Multiplexed Immunofluorescence Cell Phenotyping and Spatial Profiling of Tumor FFPE Samples.

作者信息

Manesse Mael, Patel Katir K, Bobrow Mark, Downing Sean R

机构信息

Ultivue, Cambridge, MA, USA.

出版信息

Methods Mol Biol. 2020;2055:585-592. doi: 10.1007/978-1-4939-9773-2_26.

Abstract

Multiplexed immunohistochemistry (mIHC) enables the detection, quantification, and localization of many markers within cell or tissue samples, leading to a better understanding of the architecture of a disease at the cellular level. Current mIHC techniques involve long staining and assay times, require dedicated and/or captive instrumentation, and entail tedious assay optimization, hindering their establishment as routine methods. Here, we demonstrate the use of the InSituPlex method for spatial profiling of immuno-oncology targets in FFPE tumor tissue with the UltiMapper™ I/O PD-L1 multiplex assay. The panel consists of five protein markers to profile immune infiltration and PD-L1 expression and includes CD8, CD68, PD-L1, pan CK, and SOX10 markers. The assay shows benefits of high and low expression of markers, coexpression and colocalization of proteins in single cells, and completion of staining and image acquisition in 5.5 h. Through the combination of multiplexed characterization of protein expression in whole tissue sections, fast staining workflow, and compatibility with existing instrumentation, the InSituPlex method provides a robust modality for deep phenotyping of the tumor and its microenvironment.

摘要

多重免疫组化(mIHC)能够检测、定量并定位细胞或组织样本中的多种标志物,从而在细胞水平上更好地理解疾病的结构。当前的mIHC技术存在染色和检测时间长、需要专用和/或定制仪器以及繁琐的检测优化等问题,阻碍了其成为常规方法。在此,我们展示了使用InSituPlex方法通过UltiMapper™ I/O PD-L1多重检测对福尔马林固定石蜡包埋(FFPE)肿瘤组织中的免疫肿瘤学靶点进行空间分析。该检测 panel 由五个用于分析免疫浸润和PD-L1表达的蛋白质标志物组成,包括CD8、CD68、PD-L1、泛细胞角蛋白(pan CK)和SOX10标志物。该检测显示出标志物高表达和低表达、单细胞中蛋白质的共表达和共定位以及在5.5小时内完成染色和图像采集的优势。通过对全组织切片中蛋白质表达进行多重表征、快速染色工作流程以及与现有仪器的兼容性相结合,InSituPlex方法为肿瘤及其微环境的深度表型分析提供了一种强大的方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索