Suppr超能文献

在存在并发事件的情况下,评估均值比作为临床终点生物等效性研究中的因果估计量。

Assessing the ratio of means as a causal estimand in clinical endpoint bioequivalence studies in the presence of intercurrent events.

作者信息

Lou Yiyue, Jones Michael P, Sun Wanjie

机构信息

Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa.

Office of Biostatistics, Center for Drug Evaluation and Research, Food and Drug Administration (CDER/FDA), Silver Spring, Maryland.

出版信息

Stat Med. 2019 Nov 30;38(27):5214-5235. doi: 10.1002/sim.8367. Epub 2019 Oct 17.

Abstract

In clinical endpoint bioequivalence studies, the observed per-protocol (PP) population (compliers and completers in general) is usually used in the primary analysis for equivalence assessment. However, intercurrent events, ie, missingness and noncompliance, are not properly handled. The resulting estimand is not causal. Previously, we proposed the first causal framework to assess equivalence in the presence of missing data and noncompliance. We proposed a causal survivor average causal effect (SACE) estimand for the difference of means (DOM). In equivalence assessment, DOM is not as widely used as the ratio of means (ROM). However, no existing formula links the observed PP estimand to the SACE estimand for ROM as exists for DOM. Herein, we propose a similar causal framework for ROM using the principal stratification approach, one of the strategies recommended by the International Conference on Harmonisation (ICH) E9 R1 addendum. We quantify the bias of the observed ROM PP estimand for the SACE estimand, which provides a basis to identify three conditions under which the two estimands are equal. We propose a sensitivity analysis method to evaluate the robustness of the current PP estimator to estimate the SACE estimand. We extend Fieller's confidence interval for the SACE estimand using ROM, which can be applied to many settings. Simulation demonstrates that the PP estimator is biased in either directions and may inflate type 1 error and/or change power when the three identified conditions are violated. Our work can be applied to comparative clinical biosimilar studies.

摘要

在临床终点生物等效性研究中,主要分析通常使用观察到的符合方案(PP)人群(一般指依从者和完成者)来进行等效性评估。然而,并发事件,即数据缺失和不依从,并未得到妥善处理。由此产生的估计量并非因果性的。此前,我们提出了首个用于在存在缺失数据和不依从情况下评估等效性的因果框架。我们针对均值差异(DOM)提出了一种因果生存者平均因果效应(SACE)估计量。在等效性评估中,DOM的使用不如均值比(ROM)广泛。然而,对于DOM,现有公式将观察到的PP估计量与SACE估计量联系起来,但对于ROM却不存在这样的公式。在此,我们使用主分层方法(国际协调会议(ICH)E9 R1增编推荐的策略之一)为ROM提出了一个类似的因果框架。我们量化了观察到的ROM PP估计量相对于SACE估计量的偏差,这为确定两个估计量相等的三种条件提供了基础。我们提出了一种敏感性分析方法,以评估当前PP估计器估计SACE估计量的稳健性。我们使用ROM扩展了SACE估计量的Fieller置信区间,该区间可应用于多种情况。模拟表明,当违反所确定的三种条件时,PP估计器在两个方向上都会产生偏差,并且可能会夸大I型错误和/或改变检验效能。我们的工作可应用于比较性临床生物类似药研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验