响应面法和人工神经网络法优化超声辅助提取大蒜中多酚

Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic.

机构信息

University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovica 12, 34000, Kragujevac, Serbia; Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia.

Department of Environmental Science, Jožef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia.

出版信息

Food Chem Toxicol. 2020 Jan;135:110976. doi: 10.1016/j.fct.2019.110976. Epub 2019 Nov 16.

Abstract

This paper aimed to establish the optimal conditions for ultrasound-assisted extraction of polyphenols from domestic garlic (Allium sativum L.) using response surface methodology (RSM) and artificial neural network (ANN) approach. A 4-factor-3-level central composite design was used to optimize ultrasound-assisted extraction (UAE) to obtain a maximum yield of target responses. Maximum values of the two output parameters: 19.498 mg GAE/g fresh weight of sample total phenolic content and 1.422 mg RUT/g fresh weight of sample total flavonoid content were obtained under optimum extraction conditions: 13.50 min X, 59.00 °C X, 71.00% X and 20.00 mL/g X. Root mean square error for training, validation, and testing were 0.0209, 3.6819 and 1.8341, respectively. The correlation coefficient between experimentally obtained total phenolic content and total flavonoid content and values predicted by ANN were 0.9998 for training, 0.9733 for validation, and 0.9821 for testing, indicating the good predictive ability of the model. The ANN model had a higher prediction efficiency than the RSM model. Hence, RSM can demonstrate the interaction effects of basic inherent UAE parameters on target responses, whereas ANN can reliably model the UAE process with better predictive and estimation capabilities.

摘要

本文旨在采用响应面法(RSM)和人工神经网络(ANN)方法,确定超声辅助提取国产大蒜(Allium sativum L.)中多酚的最佳条件。采用四因素三水平的中心组合设计对超声辅助提取(UAE)进行优化,以获得目标响应的最大产率。在最佳提取条件下,两个输出参数的最大值为:样品总酚含量的 19.498mgGAE/g 鲜重和样品总黄酮含量的 1.422mgRUT/g 鲜重:X=13.50min、X=59.00°C、X=71.00%和 X=20.00mL/g。训练、验证和测试的均方根误差分别为 0.0209、3.6819 和 1.8341。实验获得的总酚含量和总黄酮含量与 ANN 预测值之间的相关系数分别为训练 0.9998、验证 0.9733 和测试 0.9821,表明模型具有良好的预测能力。ANN 模型比 RSM 模型具有更高的预测效率。因此,RSM 可以显示基本固有 UAE 参数对目标响应的相互作用,而 ANN 可以更可靠地对 UAE 过程进行建模,具有更好的预测和估计能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索