解开相关性的谜团,第三部分:通过贝叶斯多层建模对自然扫描进行的跨主体相关性分析。
Untangling the relatedness among correlations, part III: Inter-subject correlation analysis through Bayesian multilevel modeling for naturalistic scanning.
机构信息
Scientific and Statistical Computing Core, National Institute of Mental Health, USA.
Scientific and Statistical Computing Core, National Institute of Mental Health, USA.
出版信息
Neuroimage. 2020 Aug 1;216:116474. doi: 10.1016/j.neuroimage.2019.116474. Epub 2019 Dec 27.
While inter-subject correlation (ISC) analysis is a powerful tool for naturalistic scanning data, drawing appropriate statistical inferences is difficult due to the daunting task of accounting for the intricate relatedness in data structure as well as handling the multiple testing issue. Although the linear mixed-effects (LME) modeling approach (Chen et al., 2017a) is capable of capturing the relatedness in the data and incorporating explanatory variables, there are a few challenging issues: 1) it is difficult to assign accurate degrees of freedom for each testing statistic, 2) multiple testing correction is potentially over-penalizing due to model inefficiency, and 3) thresholding necessitates arbitrary dichotomous decisions. Here we propose a Bayesian multilevel (BML) framework for ISC data analysis that integrates all regions of interest into one model. By loosely constraining the regions through a weakly informative prior, BML dissolves multiplicity through conservatively pooling the effect of each region toward the center and improves collective fitting and overall model performance. In addition to potentially achieving a higher inference efficiency, BML improves spatial specificity and easily allows the investigator to adopt a philosophy of full results reporting. A dataset of naturalistic scanning is utilized to illustrate the modeling approach with 268 parcels and to showcase the modeling capability, flexibility and advantages in results reporting. The associated program will be available as part of the AFNI suite for general use.
虽然跨被试相关分析(ISC)是自然扫描数据的有力工具,但由于数据结构的复杂相关性以及处理多重检验问题的艰巨任务,得出适当的统计推断是很困难的。虽然线性混合效应(LME)建模方法(Chen 等人,2017a)能够捕捉数据中的相关性并纳入解释变量,但仍存在一些挑战:1)难以为每个检验统计分配准确的自由度,2)由于模型效率低下,多重检验校正可能会过度惩罚,3)阈值需要任意的二分决策。在这里,我们提出了一种用于 ISC 数据分析的贝叶斯多层次(BML)框架,该框架将所有感兴趣的区域整合到一个模型中。通过通过一个弱信息先验来松散地约束区域,BML 通过保守地将每个区域的效果向中心聚集来消解多重性,从而提高整体拟合和模型性能。除了潜在地实现更高的推断效率外,BML 还提高了空间特异性,并且易于让研究人员采用全面报告结果的理念。我们使用一个自然扫描数据集来说明具有 268 个区组的建模方法,并展示其在结果报告中的建模能力、灵活性和优势。相关程序将作为 AFNI 套件的一部分供一般使用。