使用不同深度学习技术的神经障碍患病率和诊断:一项荟萃分析。
Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis.
机构信息
Department of Computer Science and Application, DAV University, Jalandhar, India.
出版信息
J Med Syst. 2020 Jan 4;44(2):49. doi: 10.1007/s10916-019-1519-7.
This paper dispenses an exhaustive review on deep learning techniques used in the prognosis of eight different neuropsychiatric and neurological disorders such as stroke, alzheimer, parkinson's, epilepsy, autism, migraine, cerebral palsy, and multiple sclerosis. These diseases are critical, life-threatening and in most of the cases may lead to other precarious human disorders. Deep learning techniques are emerging soft computing technique which has been lucratively used to unravel different real-life problems such as pattern recognition (Face, Emotion, and Speech), traffic management, drug discovery, disease diagnosis, and network intrusion detection. This study confers the discipline, frameworks, and methodologies used by different deep learning techniques to diagnose different human neurological disorders. Here, one hundred and thirty-six different articles related to neurological and neuropsychiatric disorders diagnosed using different deep learning techniques are studied. The morbidity and mortality rate of major neuropsychiatric and neurological disorders has also been delineated. The performance and publication trend of different deep learning techniques employed in the investigation of these diseases has been examined and analyzed. Different performance metrics like accuracy, specificity, and sensitivity have also been examined. The research implication, challenges and the future directions related to the study have also been highlighted. Eventually, the research breaches are identified and it is witnessed that there is more scope in the diagnosis of migraine, cerebral palsy and stroke using different deep learning models. Likewise, there is a potential opportunity to use and explore the performance of Restricted Boltzmann Machine, Deep Boltzmann Machine and Deep Belief Network for diagnosis of different human neuropsychiatric and neurological disorders.
本文对深度学习技术在八种不同神经精神和神经疾病(如中风、阿尔茨海默病、帕金森病、癫痫、自闭症、偏头痛、脑瘫和多发性硬化症)预后中的应用进行了全面综述。这些疾病是严重的、危及生命的,在大多数情况下,可能导致其他危及生命的人类疾病。深度学习技术是一种新兴的软计算技术,已被成功地用于解决各种现实生活中的问题,如模式识别(人脸、情感和语音)、交通管理、药物发现、疾病诊断和网络入侵检测。本研究介绍了不同深度学习技术用于诊断不同人类神经疾病的学科、框架和方法。在这里,研究了 136 篇不同的与使用不同深度学习技术诊断神经精神和神经疾病相关的文章。还描述了主要神经精神和神经疾病的发病率和死亡率。检查和分析了不同深度学习技术在这些疾病研究中的性能和发表趋势。还检查了不同的性能指标,如准确性、特异性和敏感性。还强调了研究的意义、挑战和未来方向。最终,确定了研究中的差距,并见证了使用不同深度学习模型在偏头痛、脑瘫和中风的诊断中有更多的机会。同样,也有机会使用和探索受限玻尔兹曼机、深度玻尔兹曼机和深度置信网络在不同人类神经精神和神经疾病诊断中的性能。