电穿孔作为一种选择方法来生成基因修饰的树突状细胞瘤苗。

Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines.

机构信息

Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.

Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.

出版信息

Curr Opin Biotechnol. 2020 Oct;65:142-155. doi: 10.1016/j.copbio.2020.02.009. Epub 2020 Mar 30.

Abstract

In the last few decades, immunotherapy has emerged as an alternative therapeutic approach to treat cancer. Immunotherapy offers a plethora of different treatment possibilities. Among these, dendritic cell (DC)-based cancer vaccines constitute one of the most promising and valuable therapeutic options. DC-vaccines have been introduced into the clinics more than 15 years ago, and preclinical studies showed their general safety and low toxic effects on patients. However, their treatment efficacy is still rather limited, demanding for novel avenues to improve vaccine efficacy. One way to potentially achieve this is to focus on improving the DC-T cell interaction to further increase T cell priming and downstream activity. A successful DC-T cell interaction requires three different signals (Figure 1): (1) Major Histocompatibility Complex (MHC) and antigen complex interaction with T cell receptor (TCR) (2) interaction between co-stimulatory molecules and their cognate ligands at the cell surface and (3) secretion of cytokines to polarize the immune response toward a Type 1 helper (Th1) phenotype. In recent years, many studies attempted to improve the DC-T cell interaction and overall cancer vaccine therapeutic outcomes by increasing the expression of mediators of signal 1, 2 and/or 3, through genetic modifications of DCs. Transfection of genes of interest can be achieved through many different methods such as passive pulsing, lipofection, viral transfection, or electroporation (EP). However, EP is currently emerging as the method of choice thanks to its safety, versatility, and relatively easy clinical translation. In this review we will highlight the potential benefits of EP over other transfection methods as well as giving an overview of the available studies employing EP to gene-modify DCs in cancer vaccines. Crucial aspects such as safety, feasibility, and gene(s) of choice will be also discussed, together with future perspectives and opportunities for DC genetic engineering.

摘要

在过去的几十年中,免疫疗法已成为治疗癌症的另一种治疗方法。免疫疗法提供了多种不同的治疗可能性。其中,树突状细胞(DC)为基础的癌症疫苗是最有前途和最有价值的治疗选择之一。DC 疫苗在 15 年前就已引入临床,临床前研究表明其对患者具有普遍的安全性和低毒性。然而,其治疗效果仍然相当有限,需要寻找新的途径来提高疫苗的疗效。一种可能的方法是专注于改善 DC-T 细胞相互作用,以进一步增加 T 细胞的启动和下游活性。成功的 DC-T 细胞相互作用需要三个不同的信号(图 1):(1)主要组织相容性复合物(MHC)和抗原复合物与 T 细胞受体(TCR)的相互作用(2)细胞表面共刺激分子与其同源配体的相互作用(3)细胞因子的分泌,以将免疫反应向 1 型辅助(Th1)表型极化。近年来,许多研究试图通过增加信号 1、2 和/或 3 的调节剂的表达来改善 DC-T 细胞相互作用和整体癌症疫苗治疗效果,通过对 DC 进行基因修饰。感兴趣基因的转染可以通过多种不同的方法来实现,例如被动脉冲、脂质体转染、病毒转染或电穿孔(EP)。然而,由于其安全性、多功能性和相对容易的临床转化,EP 目前正成为首选方法。在这篇综述中,我们将重点介绍 EP 相对于其他转染方法的潜在优势,并概述利用 EP 对癌症疫苗中的 DC 进行基因修饰的现有研究。还将讨论安全性、可行性和选择的基因等关键方面,以及 DC 基因工程的未来展望和机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索