Suppr超能文献

溴仿生物合成的遗传和生化重建为海藻活性氧酶学提供了新见解。

Genetic and Biochemical Reconstitution of Bromoform Biosynthesis in Lends Insights into Seaweed Reactive Oxygen Species Enzymology.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.

出版信息

ACS Chem Biol. 2020 Jun 19;15(6):1662-1670. doi: 10.1021/acschembio.0c00299. Epub 2020 Jun 8.

Abstract

Marine macroalgae, seaweeds, are exceptionally prolific producers of halogenated natural products. Biosynthesis of halogenated molecules in seaweeds is inextricably linked to reactive oxygen species (ROS) signaling as hydrogen peroxide serves as a substrate for haloperoxidase enzymes that participate in the construction these halogenated molecules. Here, using red macroalga , a prolific producer of the ozone depleting molecule bromoform, we provide the discovery and biochemical characterization of a ROS-producing NAD(P)H oxidase from seaweeds. This discovery was enabled by our sequencing of genomes, in which we find the gene encoding the ROS-producing enzyme to be clustered with genes encoding bromoform-producing haloperoxidases. Biochemical reconstitution of haloperoxidase activities establishes that fatty acid biosynthesis can provide viable hydrocarbon substrates for bromoform production. The ROS production haloperoxidase enzymology that we describe here advances seaweed biology and biochemistry by providing the molecular basis for decades worth of physiological observations in ROS and halogenated natural product biosyntheses.

摘要

海洋大型藻类,即海藻,是卤代天然产物的特别丰富的生产者。海藻中卤代分子的生物合成与活性氧(ROS)信号密不可分,因为过氧化氢是参与构建这些卤代分子的卤过氧化物酶的底物。在这里,我们使用红海藻,一种臭氧消耗分子溴仿的丰富生产者,提供了一种从海藻中产生 ROS 的 NAD(P)H 氧化酶的发现和生化特征。这一发现得益于我们对基因组的测序,在测序中我们发现编码产生 ROS 的酶的基因与编码产生溴仿的卤过氧化物酶的基因簇在一起。卤过氧化物酶活性的生化重建确立了脂肪酸生物合成可以为溴仿的产生提供可行的碳氢化合物底物。我们在这里描述的 ROS 产生卤过氧化物酶酶学通过为 ROS 和卤代天然产物生物合成中数十年来的生理观察提供分子基础,推进了海藻生物学和生物化学的发展。

相似文献

1
Genetic and Biochemical Reconstitution of Bromoform Biosynthesis in Lends Insights into Seaweed Reactive Oxygen Species Enzymology.
ACS Chem Biol. 2020 Jun 19;15(6):1662-1670. doi: 10.1021/acschembio.0c00299. Epub 2020 Jun 8.
2
β-Dicarbonyls Facilitate Engineered Microbial Bromoform Biosynthesis.
ACS Synth Biol. 2024 May 17;13(5):1492-1497. doi: 10.1021/acssynbio.4c00005. Epub 2024 Mar 25.
3
In Vitro Response of Rumen Microbiota to the Antimethanogenic Red Macroalga Asparagopsis taxiformis.
Microb Ecol. 2018 Apr;75(3):811-818. doi: 10.1007/s00248-017-1086-8. Epub 2017 Oct 10.
4
Identification of reproductive sex-biased gene expression in Asparagopsis taxiformis (lineage 6) gametophytes.
J Phycol. 2024 Apr;60(2):327-342. doi: 10.1111/jpy.13419. Epub 2023 Dec 29.
5
Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae.
Mar Biotechnol (NY). 2018 Jun;20(3):282-303. doi: 10.1007/s10126-018-9820-x. Epub 2018 Apr 24.
6
Obligate Brominating Enzymes Underlie Bromoform Production by Marine Cyanobacteria.
J Phycol. 2021 Aug;57(4):1131-1139. doi: 10.1111/jpy.13142. Epub 2021 Mar 16.
9
Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities.
Animals (Basel). 2020 Dec 18;10(12):2432. doi: 10.3390/ani10122432.
10
Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism.
Microbiome. 2024 Mar 7;12(1):47. doi: 10.1186/s40168-023-01740-6.

引用本文的文献

2
Insights into the Red Seaweed Using an Integrative Multi-Omics Analysis.
Plants (Basel). 2025 May 19;14(10):1523. doi: 10.3390/plants14101523.
3
Halogenase-Assisted Biocatalytic Derivatization of Aminothiazoles and Cephalosporin Antibiotics.
J Org Chem. 2025 Mar 7;90(9):3507-3511. doi: 10.1021/acs.joc.4c03043. Epub 2025 Feb 20.
5
Emerging microalgal feed additives for ruminant production and sustainability.
Adv Biotechnol (Singap). 2024;2(2):17. doi: 10.1007/s44307-024-00024-w. Epub 2024 May 11.
6
β-Dicarbonyls Facilitate Engineered Microbial Bromoform Biosynthesis.
ACS Synth Biol. 2024 May 17;13(5):1492-1497. doi: 10.1021/acssynbio.4c00005. Epub 2024 Mar 25.
7
Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism.
Microbiome. 2024 Mar 7;12(1):47. doi: 10.1186/s40168-023-01740-6.
9
Biosynthesis of Haloterpenoids in Red Algae via Microbial-like Type I Terpene Synthases.
ACS Chem Biol. 2024 Jan 19;19(1):185-192. doi: 10.1021/acschembio.3c00627. Epub 2023 Dec 11.

本文引用的文献

1
Scalable Biosynthesis of the Seaweed Neurochemical, Kainic Acid.
Angew Chem Int Ed Engl. 2019 Jun 17;58(25):8454-8457. doi: 10.1002/anie.201902910. Epub 2019 May 10.
2
Autometa: automated extraction of microbial genomes from individual shotgun metagenomes.
Nucleic Acids Res. 2019 Jun 4;47(10):e57. doi: 10.1093/nar/gkz148.
3
Marine Vanadium-Dependent Haloperoxidases, Their Isolation, Characterization, and Application.
Methods Enzymol. 2018;605:141-201. doi: 10.1016/bs.mie.2018.02.026. Epub 2018 Apr 7.
5
Molecular Mechanisms for Microbe Recognition and Defense by the Red Seaweed .
mSphere. 2017 Dec 6;2(6). doi: 10.1128/mSphere.00094-17. eCollection 2017 Nov-Dec.
6
Insights into the red algae and eukaryotic evolution from the genome of (Bangiophyceae, Rhodophyta).
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6361-E6370. doi: 10.1073/pnas.1703088114. Epub 2017 Jul 17.
7
Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.
Chem Rev. 2017 Apr 26;117(8):5619-5674. doi: 10.1021/acs.chemrev.6b00571. Epub 2017 Jan 20.
9
Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13789-93. doi: 10.1073/pnas.1511463112. Epub 2015 Oct 26.
10
Tropospheric halogen chemistry: sources, cycling, and impacts.
Chem Rev. 2015 May 27;115(10):4035-62. doi: 10.1021/cr5006638. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验