SpIntellx Inc.
Departments of Biomedical Informatics.
Adv Anat Pathol. 2020 Jul;27(4):241-250. doi: 10.1097/PAP.0000000000000264.
Pathologists are adopting whole slide images (WSIs) for diagnosis, thanks to recent FDA approval of WSI systems as class II medical devices. In response to new market forces and recent technology advances outside of pathology, a new field of computational pathology has emerged that applies artificial intelligence (AI) and machine learning algorithms to WSIs. Computational pathology has great potential for augmenting pathologists' accuracy and efficiency, but there are important concerns regarding trust of AI due to the opaque, black-box nature of most AI algorithms. In addition, there is a lack of consensus on how pathologists should incorporate computational pathology systems into their workflow. To address these concerns, building computational pathology systems with explainable AI (xAI) mechanisms is a powerful and transparent alternative to black-box AI models. xAI can reveal underlying causes for its decisions; this is intended to promote safety and reliability of AI for critical tasks such as pathology diagnosis. This article outlines xAI enabled applications in anatomic pathology workflow that improves efficiency and accuracy of the practice. In addition, we describe HistoMapr-Breast, an initial xAI enabled software application for breast core biopsies. HistoMapr-Breast automatically previews breast core WSIs and recognizes the regions of interest to rapidly present the key diagnostic areas in an interactive and explainable manner. We anticipate xAI will ultimately serve pathologists as an interactive computational guide for computer-assisted primary diagnosis.
病理学家正在采用全玻片图像 (WSI) 进行诊断,这要归功于最近 FDA 将 WSI 系统批准为 II 类医疗器械。为了应对新的市场力量和病理学领域以外的新技术进步,一个新的计算病理学领域已经出现,该领域将人工智能 (AI) 和机器学习算法应用于 WSI。计算病理学在提高病理学家的准确性和效率方面具有巨大潜力,但由于大多数 AI 算法的不透明、黑盒性质,对 AI 的信任存在重要问题。此外,关于病理学家应该如何将计算病理学系统纳入其工作流程,还缺乏共识。为了解决这些问题,构建具有可解释 AI (xAI) 机制的计算病理学系统是替代黑盒 AI 模型的强大而透明的方法。xAI 可以揭示其决策的根本原因;这旨在为病理学诊断等关键任务提高 AI 的安全性和可靠性。本文概述了在解剖病理学工作流程中启用 xAI 的应用,这些应用提高了实践的效率和准确性。此外,我们还描述了 HistoMapr-Breast,这是一个用于乳腺核心活检的初始 xAI 启用软件应用程序。HistoMapr-Breast 自动预览乳腺核心 WSI 并识别感兴趣的区域,以交互和可解释的方式快速呈现关键诊断区域。我们预计 xAI 将最终成为病理学家的交互式计算指南,用于计算机辅助的初步诊断。