Suppr超能文献

一种开放获取的计算机图像分析 (CIA) 方法,可通过牛的第 5-6 肋骨的安卓智能手机图像预测肉和脂肪含量。

An open-access computer image analysis (CIA) method to predict meat and fat content from an android smartphone-derived picture of the bovine 5th-6th rib.

机构信息

Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.

French Livestock Institute, Carcass and Meat Quality Department, Agrapole, 23 rue Jean Baldassini, 69364 Lyon cedex 07, France.

出版信息

Methods. 2021 Feb;186:79-89. doi: 10.1016/j.ymeth.2020.06.023. Epub 2020 Jul 7.

Abstract

Marbling and rib composition are important attributes related to carcass yields and values, beef quality, consumer satisfaction and purchasing decisions. An open-access computer image analysis method based on a fresh beef rib image captured under nonstandardized and uncontrolled conditions was developed to determine the intramuscular, intermuscular and total fat content. For this purpose, cross-section images of the 5th-6th rib from 130 bovine carcasses were captured with a Galaxy S8 smartphone. The pictures were analyzed with a program developed using ImageJ open source software. The 17 processed image features that were obtained were mined relative to gold standard measures, namely, intermuscular fat, total fat and muscles dissected from a rib and weighed, and intramuscular fat content (IMF - marbling) determined by the Soxhlet method. The best predictions with the lowest prediction errors were obtained by the sparse partial least squares method for both IMF percent and rib composition and from a combination of animal and image analysis features captured from the caudal face of the 6th rib captured on a table. These predictions were more accurate than those based on animal and image analysis features captured from the caudal face of the 5th rib on hanging carcasses. The external-validated prediction precision was 90% for IMF and ranged from 71 to 86% for the total fat, intermuscular and muscle rib weight ratios. Therefore, an easy, low-cost, user-friendly and rapid method based on a smartphone picture from the 6th rib of bovine carcasses provides an accurate method for fat content determination.

摘要

大理石花纹和肋骨组成是与胴体产量和价值、牛肉质量、消费者满意度和购买决策相关的重要属性。本研究开发了一种基于非标准化和非受控条件下拍摄的新鲜牛肋骨图像的计算机图像分析方法,用于确定肌内、肌间和总脂肪含量。为此,使用 Galaxy S8 智能手机拍摄了 130 个牛胴体的第 5-6 肋骨的横截面图像。使用 ImageJ 开源软件开发的程序对这些图片进行了分析。获得了 17 个经过处理的图像特征,这些特征与金标准测量值(肌间脂肪、总脂肪和从肋骨上解剖出来并称重的肌肉以及通过索氏提取法确定的肌内脂肪含量[IMF-大理石花纹])进行了挖掘。稀疏偏最小二乘法对肌内脂肪百分比和肋骨组成的预测效果最好,预测误差最低,并且来自于表上第 6 肋骨尾部从动物和图像分析中捕获的特征以及来自悬挂牛胴体第 5 肋骨尾部从动物和图像分析中捕获的特征的组合。这种预测方法比基于悬挂牛胴体第 5 肋骨尾部从动物和图像分析中捕获的特征的预测方法更准确。外部验证的肌内脂肪预测精度为 90%,总脂肪、肌间脂肪和肌肉肋骨重量比的预测精度范围为 71%至 86%。因此,一种基于牛胴体第 6 肋骨智能手机图片的简单、低成本、用户友好且快速的方法为脂肪含量的确定提供了一种准确的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验