抑制 miR-1193 导致缺乏 DNA-PKcs 的多形性胶质母细胞瘤细胞的合成致死。
Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs.
机构信息
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
Key Laboratory for Molecular Biotechnology, College of Life Sciences, Nanjing University, 210093, Nanjing, Jiangsu, P.R. China.
出版信息
Cell Death Dis. 2020 Jul 30;11(7):602. doi: 10.1038/s41419-020-02812-3.
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are 'coincidental' treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.
多形性胶质母细胞瘤(GBM)是最恶性的原发性脑肿瘤,在癌症中死亡率最高,对辐射和细胞毒性化疗具有很高的抗性。虽然一些靶向治疗可以部分抑制由致癌基因突变驱动的 GBM 细胞增殖,但利用合成致死性的治疗方法是针对具有基因突变的癌症(如 GBM)的“偶然”治疗方法,因为这些癌症经常表现出 DNA-PKcs 突变。通过使用内部构建的全基因组人类 microRNA 抑制剂文库实施高效的高通量筛选(HTS)平台,我们证明了 miR-1193 的抑制作用使 DNA-PKcs 缺陷的 GBM 肿瘤细胞敏感。此外,我们发现 miR-1193 直接靶向 YY1AP1,导致随后抑制 FEN1,这是 DNA 损伤修复的重要因素。抑制 miR-1193 导致 DNA 双链断裂的积累,从而增加基因组不稳定性。RPA 包被的 ssDNA 结构增强了 ATR 检查点激酶活性,随后激活了 CHK1/p53/凋亡轴。这些数据为 miR-1193 抑制作为针对具有 DNA-PKcs 缺陷的 GBM 癌细胞的潜在合成致死方法的应用提供了临床前理论依据。