用于解释任务功能磁共振成像生物标志物的图神经网络
Graph Neural Network for Interpreting Task-fMRI Biomarkers.
作者信息
Li Xiaoxiao, Dvornek Nicha C, Zhou Yuan, Zhuang Juntang, Ventola Pamela, Duncan James S
机构信息
Biomedical Engineering, Yale University, New Haven, CT, USA.
Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
出版信息
Med Image Comput Comput Assist Interv. 2019 Oct;11768:485-493. doi: 10.1007/978-3-030-32254-0_54. Epub 2019 Oct 10.
Finding the biomarkers associated with ASD is helpful for understanding the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatment. A promising approach to identify biomarkers is using Graph Neural Networks (GNNs), which can be used to analyze graph structured data, i.e. brain networks constructed by fMRI. One way to interpret important features is through looking at how the classification probability changes if the features are occluded or replaced. The major limitation of this approach is that replacing values may change the distribution of the data and lead to serious errors. Therefore, we develop a 2-stage pipeline to eliminate the need to replace features for reliable biomarker interpretation. Specifically, we propose an inductive GNN to embed the graphs containing different properties of task-fMRI for identifying ASD and then discover the brain regions/sub-graphs used as evidence for the GNN classifier. We first show GNN can achieve high accuracy in identifying ASD. Next, we calculate the feature importance scores using GNN and compare the interpretation ability with Random Forest. Finally, we run with different atlases and parameters, proving the robustness of the proposed method. The detected biomarkers reveal their association with social behaviors and are consistent with those reported in the literature. We also show the potential of discovering new informative biomarkers. Our pipeline can be generalized to other graph feature importance interpretation problems.
寻找与自闭症谱系障碍(ASD)相关的生物标志物有助于理解该疾病的潜在根源,并能实现更早的诊断和更具针对性的治疗。一种很有前景的识别生物标志物的方法是使用图神经网络(GNN),它可用于分析图结构数据,即通过功能磁共振成像(fMRI)构建的脑网络。解释重要特征的一种方法是观察如果特征被遮挡或替换,分类概率会如何变化。这种方法的主要局限性在于替换值可能会改变数据的分布并导致严重错误。因此,我们开发了一个两阶段流程,以消除为进行可靠的生物标志物解释而替换特征的需求。具体而言,我们提出一种归纳式GNN,用于嵌入包含任务fMRI不同属性的图以识别ASD,然后发现用作GNN分类器证据的脑区/子图。我们首先表明GNN在识别ASD方面能够实现高精度。接下来,我们使用GNN计算特征重要性得分,并将其解释能力与随机森林进行比较。最后,我们使用不同的图谱和参数运行,证明了所提方法的稳健性。检测到的生物标志物揭示了它们与社会行为的关联,并且与文献中报道的一致。我们还展示了发现新的信息丰富的生物标志物的潜力。我们的流程可以推广到其他图特征重要性解释问题。