临床数据在学习型电子病历中的图形化展示。

Graphical Presentations of Clinical Data in a Learning Electronic Medical Record.

机构信息

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.

Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.

出版信息

Appl Clin Inform. 2020 Aug;11(4):680-691. doi: 10.1055/s-0040-1709707. Epub 2020 Oct 14.

Abstract

BACKGROUND

Complex electronic medical records (EMRs) presenting large amounts of data create risks of cognitive overload. We are designing a Learning EMR (LEMR) system that utilizes models of intensive care unit (ICU) physicians' data access patterns to identify and then highlight the most relevant data for each patient.

OBJECTIVES

We used insights from literature and feedback from potential users to inform the design of an EMR display capable of highlighting relevant information.

METHODS

We used a review of relevant literature to guide the design of preliminary paper prototypes of the LEMR user interface. We observed five ICU physicians using their current EMR systems in preparation for morning rounds. Participants were interviewed and asked to explain their interactions and challenges with the EMR systems. Findings informed the revision of our prototypes. Finally, we conducted a focus group with five ICU physicians to elicit feedback on our designs and to generate ideas for our final prototypes using participatory design methods.

RESULTS

Participating physicians expressed support for the LEMR system. Identified design requirements included the display of data essential for every patient together with diagnosis-specific data and new or significantly changed information. Respondents expressed preferences for fishbones to organize labs, mouseovers to access additional details, and unobtrusive alerts minimizing color-coding. To address the concern about possible physician overreliance on highlighting, participants suggested that non-highlighted data should remain accessible. Study findings led to revised prototypes, which will inform the development of a functional user interface.

CONCLUSION

In the feedback we received, physicians supported pursuing the concept of a LEMR system. By introducing novel ways to support physicians' cognitive abilities, such a system has the potential to enhance physician EMR use and lead to better patient outcomes. Future plans include laboratory studies of both the utility of the proposed designs on decision-making, and the possible impact of any automation bias.

摘要

背景

呈现大量数据的复杂电子病历(EMR)会带来认知过载的风险。我们正在设计一种学习型电子病历(LEMR)系统,该系统利用重症监护病房(ICU)医生的数据访问模式模型,识别并突出显示每位患者最相关的数据。

目的

我们从文献中获得的见解和潜在用户的反馈,为设计一种能够突出显示相关信息的电子病历显示界面提供了信息。

方法

我们回顾了相关文献,以指导设计 LEMR 用户界面的初步纸质原型。我们观察了五名 ICU 医生在准备晨间查房时使用他们当前的电子病历系统。参与者接受了访谈,并被要求解释他们与电子病历系统的交互和挑战。调查结果为我们的原型修订提供了依据。最后,我们与五名 ICU 医生进行了焦点小组讨论,征求他们对设计的反馈意见,并使用参与式设计方法为我们的最终原型生成想法。

结果

参与研究的医生对 LEMR 系统表示支持。确定的设计要求包括显示每位患者的基本数据以及特定于诊断的数据和新的或显著变化的信息。受访者表示喜欢鱼骨图来组织实验室数据,鼠标悬停来访问附加细节,以及不显眼的警报,尽量减少颜色编码。为了解决可能出现的医生过度依赖突出显示的问题,参与者建议非突出显示的数据仍应保持可访问性。研究结果导致了原型的修订,这将为开发功能齐全的用户界面提供信息。

结论

在收到的反馈中,医生们支持探索学习型电子病历系统的概念。通过引入支持医生认知能力的新方法,这样的系统有可能增强医生对电子病历的使用,并带来更好的患者结果。未来的计划包括对拟议设计在决策中的实用性以及任何自动化偏差的可能影响进行实验室研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索