利用分形特征检测无线胶囊内镜图像中的异常情况。

Detection of abnormality in wireless capsule endoscopy images using fractal features.

作者信息

Jain Samir, Seal Ayan, Ojha Aparajita, Krejcar Ondrej, Bureš Jan, Tachecí Ilja, Yazidi Anis

机构信息

PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, 482005, India.

PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur, 482005, India; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradecka, 1249, Hradec Kralove, 50003, Czech Republic.

出版信息

Comput Biol Med. 2020 Dec;127:104094. doi: 10.1016/j.compbiomed.2020.104094. Epub 2020 Oct 27.

Abstract

One of the most recent non-invasive technologies to examine the gastrointestinal tract is wireless capsule endoscopy (WCE). As there are thousands of endoscopic images in an 8-15 h long video, an evaluator has to pay constant attention for a relatively long time (60-120 min). Therefore the possibility of the presence of pathological findings in a few images (displayed for evaluation for a few seconds only) brings a significant risk of missing the pathology with all negative consequences for the patient. Hence, manually reviewing a video to identify abnormal images is not only a tedious and time consuming task that overwhelms human attention but also is error prone. In this paper, a method is proposed for the automatic detection of abnormal WCE images. The differential box counting method is used for the extraction of fractal dimension (FD) of WCE images and the random forest based ensemble classifier is used for the identification of abnormal frames. The FD is a well-known technique for extraction of features related to texture, smoothness, and roughness. In this paper, FDs are extracted from pixel-blocks of WCE images and are fed to the classifier for identification of images with abnormalities. To determine a suitable pixel block size for FD feature extraction, various sizes of blocks are considered and are fed into six frequently used classifiers separately, and the block size of 7×7 giving the best performance is empirically determined. Further, the selection of the random forest ensemble classifier is also done using the same empirical study. Performance of the proposed method is evaluated on two datasets containing WCE frames. Results demonstrate that the proposed method outperforms some of the state-of-the-art methods with AUC of 85% and 99% on Dataset-I and Dataset-II respectively.

摘要

用于检查胃肠道的最新非侵入性技术之一是无线胶囊内窥镜检查(WCE)。由于在8至15小时长的视频中有数千张内窥镜图像,评估人员必须在相对较长的时间内(60至120分钟)持续关注。因此,在几张图像中(仅显示几秒钟以供评估)出现病理结果的可能性带来了漏诊病理的重大风险,这对患者会产生所有负面后果。因此,手动查看视频以识别异常图像不仅是一项繁琐且耗时的任务,会使人类注意力不堪重负,而且容易出错。本文提出了一种自动检测异常WCE图像的方法。采用差分盒计数法提取WCE图像的分形维数(FD),并使用基于随机森林的集成分类器识别异常帧。FD是一种用于提取与纹理、平滑度和粗糙度相关特征的知名技术。在本文中,从WCE图像的像素块中提取FD,并将其输入分类器以识别异常图像。为了确定用于FD特征提取的合适像素块大小,考虑了各种大小的块,并分别将其输入六个常用分类器,通过实验确定性能最佳的7×7块大小。此外,随机森林集成分类器的选择也通过相同的实验研究完成。在所提出的方法在包含WCE帧的两个数据集上进行了性能评估。结果表明,所提出的方法在数据集I和数据集II上分别以85%和99%的AUC优于一些现有技术方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索