Suppr超能文献

由微凝胶纳米金复合材料构成的仿生抗菌血小板样颗粒的研制。

Development of biomimetic antimicrobial platelet-like particles comprised of microgel nanogold composites.

作者信息

Sproul Erin P, Nandi Seema, Chee Eunice, Sivadanam Supriya, Igo Benjamin J, Schreck Luisa, Brown Ashley C

机构信息

Joint Department of Biomedical Engineering at UNC-Chapel Hill and North Carolina State University.

Comparative Medicine Institute, North Carolina State University, Raleigh, NC.

出版信息

Regen Eng Transl Med. 2020;6:299-309. doi: 10.1007/s40883-019-00121-6. Epub 2019 Aug 6.

Abstract

A blood clot is formed in response to bleeding by platelet aggregation and adherence to fibrin fibers. Platelets contract over time, stabilizing the clot, which contributes to wound healing. We have developed platelet-like particles (PLPs) that augment clotting and induce clot retraction by mimicking the fibrin-binding capabilities and morphology of native platelets. Wound repair following hemostasis can be complicated by infection; therefore, we aim to augment wound healing by combining PLPs with antimicrobial gold to develop nanogold composites (NGCs). PLPs were synthesized with N-isopropylacrylamide (NIPAm)/co-acrylic acid in a precipitation polymerization reaction and conjugated to a fibrin-specific antibody. Two methods were employed to create NGCs: 1) noncovalent swelling with aqueous gold nanospheres, and 2) covalent seeding and growth. Since the ability of PLPs to mimic platelet morphology and clot retraction requires a high degree of particle deformability, we investigated how PLPs created from NGCs affected these properties. Cryogenic Scanning Electron Microscopy (cryoSEM) and atomic force microscopy (AFM) demonstrated that particle deformability, platelet-mimetic morphology and clot retraction were maintained in NGC-based PLPs. The effect of NGCs on bacterial adhesion and growth was assessed with antimicrobial assays. These results demonstrate NGCs fabricated through noncovalent and covalent methods retain deformability necessary for clot collapse and exhibit some antimicrobial potential. Therefore, NGCs are promising materials for preventing hemorrhage and infection following trauma.

摘要

血液凝块是通过血小板聚集并附着于纤维蛋白纤维以应对出血而形成的。随着时间的推移,血小板会收缩,从而稳定凝块,这有助于伤口愈合。我们已经开发出了类血小板颗粒(PLP),它通过模仿天然血小板的纤维蛋白结合能力和形态来增强凝血并诱导凝块回缩。止血后的伤口修复可能会因感染而变得复杂;因此,我们旨在通过将PLP与抗菌性金结合来开发纳米金复合材料(NGC),以增强伤口愈合。PLP是在沉淀聚合反应中由N-异丙基丙烯酰胺(NIPAm)/共丙烯酸合成的,并与纤维蛋白特异性抗体偶联。采用了两种方法来制备NGC:1)用水性金纳米球进行非共价溶胀,以及2)共价晶种生长。由于PLP模仿血小板形态和凝块回缩的能力需要高度的颗粒可变形性,我们研究了由NGC制备的PLP如何影响这些特性。低温扫描电子显微镜(cryoSEM)和原子力显微镜(AFM)表明,基于NGC的PLP中保持了颗粒可变形性、类血小板形态和凝块回缩。通过抗菌试验评估了NGC对细菌粘附和生长的影响。这些结果表明,通过非共价和共价方法制备的NGC保留了凝块塌陷所需的可变形性,并具有一定的抗菌潜力。因此,NGC是预防创伤后出血和感染的有前景的材料。

相似文献

7
Ultrasound enhanced synthetic platelet therapy for augmented wound repair.超声增强合成血小板治疗增强伤口修复。
ACS Biomater Sci Eng. 2020 May 11;6(5):3026-3036. doi: 10.1021/acsbiomaterials.9b01976. Epub 2020 Apr 7.
8

引用本文的文献

5
Haemostatic materials for wound healing applications.用于伤口愈合的止血材料。
Nat Rev Chem. 2021 Nov;5(11):773-791. doi: 10.1038/s41570-021-00323-z. Epub 2021 Sep 17.
8
Biomaterials for Hemostasis.止血用生物材料。
Annu Rev Biomed Eng. 2022 Jun 6;24:111-135. doi: 10.1146/annurev-bioeng-012521-101942. Epub 2022 Mar 1.
10
Development of novel microenvironments for promoting enhanced wound healing.用于促进伤口加速愈合的新型微环境的研发。
Curr Tissue Microenviron Rep. 2020 Sep;1(3):73-87. doi: 10.1007/s43152-020-00009-6. Epub 2020 Jul 29.

本文引用的文献

1
Antibacterial effect of gold nanoparticles against .金纳米颗粒对……的抗菌作用
Int J Vet Sci Med. 2017 Apr 28;5(1):23-29. doi: 10.1016/j.ijvsm.2017.02.003. eCollection 2017 Jun.
4
Deaths: Final Data for 2015.死亡:2015年最终数据。
Natl Vital Stat Rep. 2017 Nov;66(6):1-75.
5
Advances in engineering hydrogels.工程水凝胶的进展
Science. 2017 May 5;356(6337). doi: 10.1126/science.aaf3627.
6
Bio-inspired nanomedicine strategies for artificial blood components.仿生纳米医学策略用于人工血液成分。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Nov;9(6). doi: 10.1002/wnan.1464. Epub 2017 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验