他克莫司暴露预测的机器学习方法。
Tacrolimus Exposure Prediction Using Machine Learning.
机构信息
University of Limoges, IPPRITT, Limoges, France.
INSERM, IPPRITT, U1248, Limoges, France.
出版信息
Clin Pharmacol Ther. 2021 Aug;110(2):361-369. doi: 10.1002/cpt.2123. Epub 2021 Jan 18.
The aim of this work is to estimate the area-under the blood concentration curve of tacrolimus (TAC) following b.i.d. or q.d. dosing in organ transplant patients, using Xgboost machine learning (ML) models. A total of 4,997 and 1,452 TAC interdose area under the curves (AUCs) from patients on b.i.d. and q.d. TAC, sent to our Immunosuppressant Bayesian Dose Adjustment expert system (www.pharmaco.chu-limoges.fr/) for AUC estimation and dose recommendation based on TAC concentrations measured at least at 3 sampling times (predose, ~ 1 and 3 hours after dosing) were used to develop 4 ML models based on 2 or 3 concentrations. For each model, data splitting was performed to obtain a training set (75%) and a test set (25%). The Xgboost models in the training set with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment were evaluated in the test set and in 6 independent full-pharmacokinetic (PK) datasets from renal, liver, and heart transplant patients. ML models based on two or three concentrations, differences between these concentrations, relative deviations from theoretical times of sampling, and four covariates (dose, type of transplantation, age, and time between transplantation and sampling) yielded excellent AUC estimation performance in the test datasets (relative bias < 5% and relative RMSE < 10%) and better performance than maximum a posteriori Bayesian estimation in the six independent full-PK datasets. The Xgboost ML models described allow accurate estimation of TAC interdose AUC and can be used for routine TAC exposure estimation and dose adjustment. They will soon be implemented in a dedicated web interface.
本研究旨在使用 Xgboost 机器学习 (ML) 模型估算器官移植患者接受 bid 或 qd 剂量后他克莫司(TAC)的血药浓度曲线下面积(AUC)。共有 4997 例和 1452 例接受 bid 和 qd TAC 的患者的 TAC 谷-峰 AUC 被发送至我们的免疫抑制剂贝叶斯剂量调整专家系统(www.pharmaco.chu-limoges.fr/),以根据至少在 3 个时间点(给药前、给药后约 1 小时和 3 小时)测量的 TAC 浓度估算 AUC 并推荐剂量,这些数据被用于开发基于 2 或 3 个浓度的 4 个 ML 模型。对于每个模型,都进行数据分割以获得训练集(75%)和测试集(25%)。在 10 倍交叉验证实验中,训练集中 Xgboost 模型的均方根误差(RMSE)最低的模型在测试集中以及来自肾、肝和心脏移植患者的 6 个独立全药代动力学(PK)数据集进行了评估。基于两个或三个浓度、这些浓度之间的差异、相对于采样理论时间的相对偏差以及四个协变量(剂量、移植类型、年龄和移植与采样之间的时间)的 ML 模型在测试数据集中表现出优异的 AUC 估算性能(相对偏差<5%,相对 RMSE<10%),并且在六个独立的全 PK 数据集中表现优于最大后验贝叶斯估计。所描述的 Xgboost ML 模型能够准确估算 TAC 谷-峰 AUC,可用于常规 TAC 暴露估算和剂量调整。它们将很快在专门的网络界面中实现。