RNA 聚合酶 II 和转录激活因子 Spt4/5 募集的动力学研究。
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
机构信息
Department of Biochemistry, Brandeis University, Waltham, MA 02454.
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.
出版信息
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32348-32357. doi: 10.1073/pnas.2011224117. Epub 2020 Dec 8.
In eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood. We used multiwavelength single-molecule fluorescence microscopy to directly image and quantitate these dynamics in a budding yeast nuclear extract that reconstitutes activator-dependent transcription in vitro. A strong activator (Gal4-VP16) greatly stimulated reversible binding of individual RNApII molecules to template DNA. Binding of labeled elongation factor Spt4/5 to DNA typically followed RNApII binding, was NTP dependent, and was correlated with association of mRNA binding protein Hek2, demonstrating specificity of Spt4/5 binding to elongation complexes. Quantitative kinetic modeling shows that only a fraction of RNApII binding events are productive and implies a rate-limiting step, probably associated with recruitment of general transcription factors, needed to assemble a transcription-competent preinitiation complex at the promoter. Spt4/5 association with transcription complexes was slowly reversible, with DNA-bound RNApII molecules sometimes binding and releasing Spt4/5 multiple times. The average Spt4/5 residence time was of similar magnitude to the time required to transcribe an average length yeast gene. These dynamics suggest that a single Spt4/5 molecule remains associated during a typical transcription event, yet can dissociate from RNApII to allow disassembly of abnormally long-lived (i.e., stalled) elongation complexes.
在真核生物中,RNA 聚合酶 II(RNApII)从模板 DNA 转录信使 RNA。几十年来的实验已经确定了转录激活、起始复合物组装和有效延伸所需的蛋白质。然而,这些蛋白质向转录复合物的募集动力学以及这些步骤之间的转变动力学还知之甚少。我们使用多波长单分子荧光显微镜直接成像和定量分析了在体外重新构建激活剂依赖性转录的芽殖酵母核提取物中的这些动力学。强激活剂(Gal4-VP16)极大地刺激了单个 RNApII 分子与模板 DNA 的可逆结合。标记的延伸因子 Spt4/5 与 DNA 的结合通常紧随 RNApII 结合,依赖于 NTP,并且与 mRNA 结合蛋白 Hek2 的关联相关,表明 Spt4/5 结合的特异性到延伸复合物。定量动力学模型表明,只有一部分 RNApII 结合事件是有生产力的,并暗示存在一个限速步骤,可能与启动子处一般转录因子的募集有关,需要组装转录能力的起始前复合物。Spt4/5 与转录复合物的结合是缓慢可逆的,DNA 结合的 RNApII 分子有时会多次结合和释放 Spt4/5。Spt4/5 的平均停留时间与转录一个平均长度的酵母基因所需的时间相似。这些动力学表明,在典型的转录事件中,单个 Spt4/5 分子保持与 RNApII 相关联,但可以与 RNApII 解离,从而允许异常长寿命(即停滞)的延伸复合物解体。