Suppr超能文献

RNA 聚合酶 II 和转录激活因子 Spt4/5 募集的动力学研究。

Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.

机构信息

Department of Biochemistry, Brandeis University, Waltham, MA 02454.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32348-32357. doi: 10.1073/pnas.2011224117. Epub 2020 Dec 8.

Abstract

In eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood. We used multiwavelength single-molecule fluorescence microscopy to directly image and quantitate these dynamics in a budding yeast nuclear extract that reconstitutes activator-dependent transcription in vitro. A strong activator (Gal4-VP16) greatly stimulated reversible binding of individual RNApII molecules to template DNA. Binding of labeled elongation factor Spt4/5 to DNA typically followed RNApII binding, was NTP dependent, and was correlated with association of mRNA binding protein Hek2, demonstrating specificity of Spt4/5 binding to elongation complexes. Quantitative kinetic modeling shows that only a fraction of RNApII binding events are productive and implies a rate-limiting step, probably associated with recruitment of general transcription factors, needed to assemble a transcription-competent preinitiation complex at the promoter. Spt4/5 association with transcription complexes was slowly reversible, with DNA-bound RNApII molecules sometimes binding and releasing Spt4/5 multiple times. The average Spt4/5 residence time was of similar magnitude to the time required to transcribe an average length yeast gene. These dynamics suggest that a single Spt4/5 molecule remains associated during a typical transcription event, yet can dissociate from RNApII to allow disassembly of abnormally long-lived (i.e., stalled) elongation complexes.

摘要

在真核生物中,RNA 聚合酶 II(RNApII)从模板 DNA 转录信使 RNA。几十年来的实验已经确定了转录激活、起始复合物组装和有效延伸所需的蛋白质。然而,这些蛋白质向转录复合物的募集动力学以及这些步骤之间的转变动力学还知之甚少。我们使用多波长单分子荧光显微镜直接成像和定量分析了在体外重新构建激活剂依赖性转录的芽殖酵母核提取物中的这些动力学。强激活剂(Gal4-VP16)极大地刺激了单个 RNApII 分子与模板 DNA 的可逆结合。标记的延伸因子 Spt4/5 与 DNA 的结合通常紧随 RNApII 结合,依赖于 NTP,并且与 mRNA 结合蛋白 Hek2 的关联相关,表明 Spt4/5 结合的特异性到延伸复合物。定量动力学模型表明,只有一部分 RNApII 结合事件是有生产力的,并暗示存在一个限速步骤,可能与启动子处一般转录因子的募集有关,需要组装转录能力的起始前复合物。Spt4/5 与转录复合物的结合是缓慢可逆的,DNA 结合的 RNApII 分子有时会多次结合和释放 Spt4/5。Spt4/5 的平均停留时间与转录一个平均长度的酵母基因所需的时间相似。这些动力学表明,在典型的转录事件中,单个 Spt4/5 分子保持与 RNApII 相关联,但可以与 RNApII 解离,从而允许异常长寿命(即停滞)的延伸复合物解体。

相似文献

1
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32348-32357. doi: 10.1073/pnas.2011224117. Epub 2020 Dec 8.
3
The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein.
Protein Sci. 2016 Sep;25(9):1710-21. doi: 10.1002/pro.2976. Epub 2016 Jul 15.
4
Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier.
Cell Rep. 2021 Sep 28;36(13):109755. doi: 10.1016/j.celrep.2021.109755.
5
The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome.
Nucleic Acids Res. 2017 Jun 20;45(11):6362-6374. doi: 10.1093/nar/gkx220.
6
Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro.
Mol Cell Biol. 2004 Apr;24(8):3324-36. doi: 10.1128/MCB.24.8.3324-3336.2004.
7
Molecular evidence for a positive role of Spt4 in transcription elongation.
EMBO J. 2003 Feb 3;22(3):612-20. doi: 10.1093/emboj/cdg047.
9
Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.
Biochem J. 2016 Oct 1;473(19):3065-79. doi: 10.1042/BCJ20160463. Epub 2016 Aug 1.

引用本文的文献

1
Multiple structures of RNA polymerase II isolated from human nuclei by ChIP-CryoEM analysis.
Nat Commun. 2025 May 28;16(1):4724. doi: 10.1038/s41467-025-59580-x.
2
Regulation of RNA polymerase II transcription through re-initiation and bursting.
Mol Cell. 2025 May 15;85(10):1907-1919. doi: 10.1016/j.molcel.2025.04.011.
4
Single-molecule analysis of transcription activation: dynamics of SAGA coactivator recruitment.
Nat Struct Mol Biol. 2025 Apr;32(4):675-686. doi: 10.1038/s41594-024-01451-y. Epub 2025 Jan 14.
7
NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression.
J Mol Biol. 2025 Jan 1;437(1):168814. doi: 10.1016/j.jmb.2024.168814. Epub 2024 Oct 5.
8
Chromatin endogenous cleavage provides a global view of yeast RNA polymerase II transcription kinetics.
bioRxiv. 2024 Oct 10:2024.07.08.602535. doi: 10.1101/2024.07.08.602535.
9
Single-molecule reconstruction of eukaryotic factor-dependent transcription termination.
Nat Commun. 2024 Jun 15;15(1):5113. doi: 10.1038/s41467-024-49527-z.
10
Time will tell: comparing timescales to gain insight into transcriptional bursting.
Trends Genet. 2024 Feb;40(2):160-174. doi: 10.1016/j.tig.2023.11.003. Epub 2024 Jan 12.

本文引用的文献

1
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18540-18549. doi: 10.1073/pnas.2005019117. Epub 2020 Jul 16.
3
Alternative transcription cycle for bacterial RNA polymerase.
Nat Commun. 2020 Jan 23;11(1):448. doi: 10.1038/s41467-019-14208-9.
4
The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22573-22582. doi: 10.1073/pnas.1905449116. Epub 2019 Oct 7.
5
Organization and regulation of gene transcription.
Nature. 2019 Sep;573(7772):45-54. doi: 10.1038/s41586-019-1517-4. Epub 2019 Aug 28.
6
Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting.
EMBO J. 2019 Jun 17;38(12). doi: 10.15252/embj.2018100809. Epub 2019 May 17.
7
In vitro analysis of RNA polymerase II elongation complex dynamics.
Genes Dev. 2019 May 1;33(9-10):578-589. doi: 10.1101/gad.324202.119. Epub 2019 Mar 7.
9
Structure of activated transcription complex Pol II-DSIF-PAF-SPT6.
Nature. 2018 Aug;560(7720):607-612. doi: 10.1038/s41586-018-0440-4. Epub 2018 Aug 22.
10
Synergistic assembly of human pre-spliceosomes across introns and exons.
Elife. 2018 Jun 22;7:e37751. doi: 10.7554/eLife.37751.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验