Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
EMBO Mol Med. 2021 Mar 5;13(3):e13257. doi: 10.15252/emmm.202013257. Epub 2021 Jan 22.
The prevalence of Parkinson's disease (PD) is increasing but the development of novel treatment strategies and therapeutics altering the course of the disease would benefit from specific, sensitive, and non-invasive biomarkers to detect PD early. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary proteome profiling. Our workflow enabled the reproducible quantification of more than 2,000 proteins in more than 200 urine samples using minimal volumes from two independent patient cohorts. The urinary proteome was significantly different between PD patients and healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome data alone were sufficient to classify mutation status and disease manifestation in mutation carriers remarkably well, identifying VGF, ENPEP, and other PD-associated proteins as the most discriminating features. Taken together, our results validate urinary proteomics as a valuable strategy for biomarker discovery and patient stratification in PD.
帕金森病(PD)的患病率正在上升,但如果有一种新的治疗策略和治疗方法能够改变疾病进程,那么就需要特定的、敏感的、非侵入性的生物标志物来早期发现 PD。在这里,我们描述了一种基于质谱(MS)的可扩展和敏感的蛋白质组学工作流程,用于尿液蛋白质组分析。我们的工作流程使用来自两个独立患者队列的最小样本量,实现了在 200 多个尿液样本中重复定量 2000 多种蛋白质。PD 患者和健康对照组之间以及两个队列中 LRRK2 G2019S 携带者和非携带者之间的尿液蛋白质组存在显著差异。有趣的是,我们的数据揭示了 LRRK2 G2019S 突变个体中溶酶体失调。当与机器学习相结合时,仅使用尿液蛋白质组数据就足以非常好地对突变携带者的突变状态和疾病表现进行分类,确定 VGF、ENPEP 和其他与 PD 相关的蛋白质作为最具区分性的特征。总之,我们的研究结果验证了尿液蛋白质组学作为 PD 生物标志物发现和患者分层的有价值策略。