Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States.
AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States.
Anal Chem. 2021 Mar 23;93(11):4884-4893. doi: 10.1021/acs.analchem.0c05002. Epub 2021 Mar 9.
Quantitative proteomics in large cohorts is highly valuable for clinical/pharmaceutical investigations but often suffers from severely compromised reliability, accuracy, and reproducibility. Here, we describe an ultra-high-resolution IonStar method achieving reproducible protein measurement in large cohorts while minimizing the ratio compression problem, by taking advantage of the exceptional selectivity of ultra-high-resolution (UHR)-MS1 detection (240k_FWHM@/ = 200). Using mixed-proteome benchmark sets reflecting large-cohort analysis with technical or biological replicates ( = 56), we comprehensively compared the quantitative performances of UHR-IonStar vs a state-of-the-art SWATH-MS method, each with their own optimal analytical platforms. We confirmed a cutting-edge micro-liquid chromatography (LC)/Triple-TOF with Spectronaut outperforms nano-LC/Orbitrap for SWATH-MS, which was then meticulously developed/optimized to maximize sensitivity, reproducibility, and proteome coverage. While the two methods with distinct principles (i.e., MS1- vs MS2-based) showed similar depth-of-analysis (∼6700-7000 missing-data-free proteins quantified, 1% protein-false discovery rate (FDR) for entire set, 2 unique peptides/protein) and good accuracy/precision in quantifying high-abundance proteins, UHR-IonStar achieved substantially superior quantitative accuracy, precision, and reproducibility for lower-abundance proteins (a category that includes most regulatory proteins), as well as much-improved sensitivity/selectivity for discovering significantly altered proteins. Furthermore, compared to SWATH-MS, UHR-IonStar showed markedly higher accuracy for a single analysis of each sample across a large set, which is an inadequately investigated albeit critical parameter for large-cohort analysis. Finally, we compared UHR-IonStar vs SWATH-MS in measuring the time courses of altered proteins in paclitaxel-treated cells ( = 36), where dysregulated biological pathways have been very well established. UHR-IonStar discovered substantially more well-recognized biological processes/pathways induced by paclitaxel. Additionally, UHR-IonStar showed markedly superior ability than SWATH-MS in accurately depicting the time courses of well known to be paclitaxel-induced biomarkers. In summary, UHR-IonStar represents a reliable, robust, and cost-effective solution for large-cohort proteomic quantification with excellent accuracy and precision.
在临床/药物研究中,对大样本进行定量蛋白质组学研究具有重要价值,但通常存在可靠性、准确性和可重复性严重受损的问题。在这里,我们描述了一种超高分辨率 IonStar 方法,通过利用超高分辨率 (UHR)-MS1 检测的优异选择性(240k_FWHM@/ = 200),在最大限度地减少比率压缩问题的同时,实现了大样本中可重复的蛋白质测量。使用反映具有技术或生物学重复的大样本分析的混合蛋白质组基准集(= 56),我们全面比较了 UHR-IonStar 与最先进的 SWATH-MS 方法的定量性能,每种方法都有其自己的最佳分析平台。我们证实了具有尖端的微液相色谱 (LC)/Triple-TOF 与 Spectronaut 组合比 nano-LC/Orbitrap 更适合 SWATH-MS,然后对其进行了精心开发/优化,以最大限度地提高灵敏度、重现性和蛋白质组覆盖率。虽然这两种基于不同原理的方法(即基于 MS1-或 MS2-)显示出相似的分析深度(定量了约 6700-7000 个无缺失数据的蛋白质,整个数据集的蛋白质假发现率 (FDR) 为 1%,2 个独特肽/蛋白)和对高丰度蛋白质进行定量的良好准确性/精密度,但 UHR-IonStar 对低丰度蛋白质(包括大多数调节蛋白)的定量准确性、精密度和重现性有了实质性的提高,并且对显著改变的蛋白质的灵敏度/选择性也有了很大的提高。此外,与 SWATH-MS 相比,UHR-IonStar 在对大型数据集的每个样本进行单一分析时表现出明显更高的准确性,这是一个尽管很重要但研究不足的参数,对大样本分析至关重要。最后,我们比较了 UHR-IonStar 和 SWATH-MS 在测量紫杉醇处理的细胞中改变的蛋白质的时间过程中的性能(= 36),其中失调的生物学途径已经得到很好的建立。UHR-IonStar 发现了紫杉醇诱导的更多公认的生物学过程/途径。此外,UHR-IonStar 在准确描绘紫杉醇诱导的标志物的时间过程方面的能力明显优于 SWATH-MS。总之,UHR-IonStar 是一种可靠、稳健且具有成本效益的解决方案,可用于大样本蛋白质组定量,具有出色的准确性和精密度。