使用机器学习预测儿科 30 天内非计划性住院再入院率:病历回顾性病例对照研究,包括书面出院记录。

Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation.

机构信息

General Surgical Ward, Princess Margaret Hospital for Children, Perth, WA 6008, Australia; and School of Nursing, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia. Email address:

School of Nursing, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia. Email address:

出版信息

Aust Health Rev. 2021 Jun;45(3):328-337. doi: 10.1071/AH20062.

Abstract

Objectives To assess whether adding clinical information and written discharge documentation variables improves prediction of paediatric 30-day same-hospital unplanned readmission compared with predictions based on administrative information alone. Methods A retrospective matched case-control study audited the medical records of patients discharged from a tertiary paediatric hospital in Western Australia (WA) between January 2010 and December 2014. A random selection of 470 patients with unplanned readmissions (out of 3330) were matched to 470 patients without readmissions based on age, sex, and principal diagnosis at the index admission. Prediction utility of three groups of variables (administrative, administrative and clinical, and administrative, clinical and written discharge documentation) were assessed using standard logistic regression and machine learning. Results Inclusion of written discharge documentation variables significantly improved prediction of readmission compared with models that used only administrative and/or clinical variables in standard logistic regression analysis (χ2 17=29.4, P=0.03). Highest prediction accuracy was obtained using a gradient boosted tree model (C-statistic=0.654), followed closely by random forest and elastic net modelling approaches. Variables highlighted as important for prediction included patients' social history (legal custody or patient was under the care of the Department for Child Protection), languages spoken other than English, completeness of nursing admission and discharge planning documentation, and timing of issuing discharge summary. Conclusions The variables of significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary add value to prediction models. What is known about the topic? Despite written discharge documentation playing a critical role in the continuity of care for paediatric patients, limited research has examined its association with, and ability to predict, unplanned hospital readmissions. Machine learning approaches have been applied to various health conditions and demonstrated improved predictive accuracy. However, few published studies have used machine learning to predict paediatric readmissions. What does this paper add? This paper presents the findings of the first known study in Australia to assess and report that written discharge documentation and clinical information improves unplanned rehospitalisation prediction accuracy in a paediatric cohort compared with administrative data alone. It is also the first known published study to use machine learning for the prediction of paediatric same-hospital unplanned readmission in Australia. The results show improved predictive performance of the machine learning approach compared with standard logistic regression. What are the implications for practitioners? The identified social and written discharge documentation predictors could be translated into clinical practice through improved discharge planning and processes, to prevent paediatric 30-day all-cause same-hospital unplanned readmission. The predictors identified in this study include significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary.

摘要

目的 评估在仅基于管理信息的基础上,增加临床信息和书面出院文档变量是否能提高儿科 30 天内同一医院非计划性再入院的预测能力。

方法 这是一项回顾性匹配病例对照研究,对 2010 年 1 月至 2014 年 12 月期间从西澳大利亚州(WA)一家三级儿科医院出院的患者的病历进行了审核。从 3330 例患者中随机选择了 470 例非计划性再入院患者(出院患者),并根据索引入院时的年龄、性别和主要诊断与 470 例无再入院患者进行了匹配。使用标准逻辑回归和机器学习评估三组变量(管理、管理和临床、管理、临床和书面出院文档)的预测效用。

结果 在标准逻辑回归分析中,与仅使用管理和/或临床变量的模型相比,纳入书面出院文档变量可显著提高再入院的预测能力(χ217=29.4,P=0.03)。使用梯度提升树模型(C 统计量=0.654)获得了最高的预测准确性,其次是随机森林和弹性网络建模方法。突出显示的对预测重要的变量包括患者的社会史(法律监护或患者受儿童保护部门的照顾)、除英语外的其他语言、护理入院和出院计划文档的完整性,以及出院总结的出具时间。

结论 显著的社会史、较低的英语熟练程度、不完整的出院文档以及延误出具出院总结等变量为预测模型增加了价值。

关于该主题,已知哪些信息?尽管书面出院文档在儿科患者的连续性护理中起着至关重要的作用,但关于其与非计划性住院再入院的关联及其预测能力的研究有限。机器学习方法已应用于各种健康状况,并显示出更高的预测准确性。然而,很少有已发表的研究使用机器学习来预测儿科再入院。本文增加了哪些新内容?本文介绍了在澳大利亚首次评估并报告书面出院文档和临床信息可提高儿科队列中非计划性再入院预测准确性的研究结果,与仅使用管理数据相比。这也是澳大利亚首次使用机器学习预测儿科同一医院非计划性再入院的已发表研究。结果表明,与标准逻辑回归相比,机器学习方法的预测性能有所提高。

对于从业者,这意味着什么?可以通过改进出院计划和流程,将识别出的社会和书面出院文档预测因素转化为临床实践,以预防儿科 30 天内全因同一医院非计划性再入院。本研究中确定的预测因素包括显著的社会史、较低的英语熟练程度、不完整的出院文档和延误出院总结的出具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索