Suppr超能文献

术后患者心电图特征的疼痛识别:方法验证研究。

Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study.

机构信息

Department of Computer Science, University of California, Irvine, Irvine, CA, United States.

Department of Anesthesiology and Perioperative Care, UC Irvine Health, Orange, CA, United States.

出版信息

J Med Internet Res. 2021 May 28;23(5):e25079. doi: 10.2196/25079.

Abstract

BACKGROUND

There is a strong demand for an accurate and objective means of assessing acute pain among hospitalized patients to help clinicians provide pain medications at a proper dosage and in a timely manner. Heart rate variability (HRV) comprises changes in the time intervals between consecutive heartbeats, which can be measured through acquisition and interpretation of electrocardiography (ECG) captured from bedside monitors or wearable devices. As increased sympathetic activity affects the HRV, an index of autonomic regulation of heart rate, ultra-short-term HRV analysis can provide a reliable source of information for acute pain monitoring. In this study, widely used HRV time and frequency domain measurements are used in acute pain assessments among postoperative patients. The existing approaches have only focused on stimulated pain in healthy subjects, whereas, to the best of our knowledge, there is no work in the literature building models using real pain data and on postoperative patients.

OBJECTIVE

The objective of our study was to develop and evaluate an automatic and adaptable pain assessment algorithm based on ECG features for assessing acute pain in postoperative patients likely experiencing mild to moderate pain.

METHODS

The study used a prospective observational design. The sample consisted of 25 patient participants aged 18 to 65 years. In part 1 of the study, a transcutaneous electrical nerve stimulation unit was employed to obtain baseline discomfort thresholds for the patients. In part 2, a multichannel biosignal acquisition device was used as patients were engaging in non-noxious activities. At all times, pain intensity was measured using patient self-reports based on the Numerical Rating Scale. A weak supervision framework was inherited for rapid training data creation. The collected labels were then transformed from 11 intensity levels to 5 intensity levels. Prediction models were developed using 5 different machine learning methods. Mean prediction accuracy was calculated using leave-one-out cross-validation. We compared the performance of these models with the results from a previously published research study.

RESULTS

Five different machine learning algorithms were applied to perform a binary classification of baseline (BL) versus 4 distinct pain levels (PL1 through PL4). The highest validation accuracy using 3 time domain HRV features from a BioVid research paper for baseline versus any other pain level was achieved by support vector machine (SVM) with 62.72% (BL vs PL4) to 84.14% (BL vs PL2). Similar results were achieved for the top 8 features based on the Gini index using the SVM method, with an accuracy ranging from 63.86% (BL vs PL4) to 84.79% (BL vs PL2).

CONCLUSIONS

We propose a novel pain assessment method for postoperative patients using ECG signal. Weak supervision applied for labeling and feature extraction improves the robustness of the approach. Our results show the viability of using a machine learning algorithm to accurately and objectively assess acute pain among hospitalized patients.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/17783.

摘要

背景

对于住院患者来说,需要一种准确且客观的方法来评估急性疼痛,以便帮助临床医生及时提供适当剂量的疼痛药物。心率变异性(HRV)包括连续心跳之间时间间隔的变化,可以通过床边监护仪或可穿戴设备获取和解释心电图(ECG)来测量。由于交感神经活动增加会影响心率的自主调节指数,因此超短期 HRV 分析可以为急性疼痛监测提供可靠的信息源。在这项研究中,广泛使用 HRV 的时间和频域测量方法来评估术后患者的急性疼痛。现有方法仅关注健康受试者的刺激性疼痛,而据我们所知,尚无使用真实疼痛数据和术后患者建立模型的文献工作。

目的

我们的研究目的是开发和评估一种基于 ECG 特征的自动适应疼痛评估算法,用于评估可能经历轻度至中度疼痛的术后患者的急性疼痛。

方法

该研究采用前瞻性观察设计。样本包括 25 名年龄在 18 至 65 岁之间的患者参与者。在研究的第一部分中,使用经皮神经电刺激仪为患者获得基线不适阈值。在第二部分中,当患者进行非伤害性活动时,使用多通道生物信号采集设备。在任何时候,疼痛强度都根据数字评分量表由患者自我报告进行测量。为了快速创建训练数据,继承了一种弱监督框架。然后将收集的标签从 11 个强度级别转换为 5 个强度级别。使用 5 种不同的机器学习方法开发预测模型。使用留一交叉验证计算平均预测准确性。我们将这些模型的性能与之前发表的研究结果进行了比较。

结果

应用五种不同的机器学习算法对基线(BL)与 4 个不同疼痛水平(PL1 至 PL4)进行二分类。使用来自 BioVid 研究论文的 3 个 HRV 时域特征对 BL 与任何其他疼痛水平进行的最高验证准确性是由支持向量机(SVM)实现的,其准确性范围为 62.72%(BL 与 PL4)至 84.14%(BL 与 PL2)。使用 SVM 方法基于基尼指数获得的前 8 个特征也得到了类似的结果,其准确性范围为 63.86%(BL 与 PL4)至 84.79%(BL 与 PL2)。

结论

我们提出了一种使用 ECG 信号对术后患者进行疼痛评估的新方法。应用于标记和特征提取的弱监督提高了方法的稳健性。我们的结果表明,使用机器学习算法准确客观地评估住院患者的急性疼痛是可行的。

国际注册报告标识符(IRRID):RR2-10.2196/17783。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64a7/8196363/8bc4ced64c12/jmir_v23i5e25079_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验