Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
Ultrasound Med Biol. 2021 Sep;47(9):2713-2722. doi: 10.1016/j.ultrasmedbio.2021.05.011. Epub 2021 Jul 6.
Developmental dysplasia of the hip (DDH) metrics based on 3-D ultrasound have proven more reliable than those based on 2-D images, but to date have been based mainly on hand-engineered features. Here, we test the performance of 3-D convolutional neural networks for automatically segmenting and delineating the key anatomical structures used to define DDH metrics: the pelvis bone surface and the femoral head. Our models are trained and tested on a data set of 136 volumes from 34 participants. For the pelvis, a 3D-U-Net achieves a Dice score of 85%, outperforming the confidence-weighted structured phase symmetry algorithm (Dice score = 19%). For the femoral head, the 3D-U-Net had centre and radius errors of 1.42 and 0.46 mm, respectively, outperforming the random forest classifier (3.90 and 2.01 mm). The improved segmentation may improve DDH measurement accuracy and reliability, which could reduce misdiagnosis.
髋关节发育不良(DDH)的三维超声测量指标比二维图像更可靠,但迄今为止,这些指标主要基于手工设计的特征。在这里,我们测试了三维卷积神经网络在自动分割和描绘用于定义 DDH 测量指标的关键解剖结构方面的性能:骨盆骨表面和股骨头。我们的模型在 34 名参与者的 136 个容积数据集上进行了训练和测试。对于骨盆,3D-U-Net 的 Dice 得分为 85%,优于置信加权结构相位对称算法(Dice 得分=19%)。对于股骨头,3D-U-Net 的中心和半径误差分别为 1.42mm 和 0.46mm,优于随机森林分类器(3.90mm 和 2.01mm)。改进的分割可能会提高 DDH 测量的准确性和可靠性,从而减少误诊。