利用机器学习和综合遗传、临床及人口统计学数据优化抗抑郁药物反应的预测。

Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data.

机构信息

Taliaz, Tel Aviv, Israel.

Lifespan Brain Institute, The Children's Hospital of Philadelphia (CHOP) and the University of Pennsylvania School of Medicine, Philadelphia, PA, USA.

出版信息

Transl Psychiatry. 2021 Jul 8;11(1):381. doi: 10.1038/s41398-021-01488-3.

Abstract

Major depressive disorder (MDD) is complex and multifactorial, posing a major challenge of tailoring the optimal medication for each patient. Current practice for MDD treatment mainly relies on trial and error, with an estimated 42-53% response rates for antidepressant use. Here, we sought to generate an accurate predictor of response to a panel of antidepressants and optimize treatment selection using a data-driven approach analyzing combinations of genetic, clinical, and demographic factors. We analyzed the response patterns of patients to three antidepressant medications in the Sequenced Treatment Alternatives to Relieve Depression (STARD) study, and employed state-of-the-art machine learning (ML) tools to generate a predictive algorithm. To validate our results, we assessed the algorithm's capacity to predict individualized antidepressant responses on a separate set of 530 patients in STARD, consisting of 271 patients in a validation set and 259 patients in the final test set. This assessment yielded an average balanced accuracy rate of 72.3% (SD 8.1) and 70.1% (SD 6.8) across the different medications in the validation and test set, respectively (p < 0.01 for all models). To further validate our design scheme, we obtained data from the Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) of patients treated with citalopram, and applied the algorithm's citalopram model. This external validation yielded highly similar results for STAR*D and PGRN-AMPS test sets, with a balanced accuracy of 60.5% and 61.3%, respectively (both p's < 0.01). These findings support the feasibility of using ML algorithms applied to large datasets with genetic, clinical, and demographic features to improve accuracy in antidepressant prescription.

摘要

重度抑郁症(MDD)是复杂的、多因素的,为每位患者定制最佳药物治疗方案是一个重大挑战。目前 MDD 治疗主要依赖于试错法,抗抑郁药的有效率估计为 42-53%。在这里,我们寻求通过分析遗传、临床和人口统计学因素的组合,使用数据驱动的方法来生成对一组抗抑郁药反应的准确预测,并优化治疗选择。我们分析了 STARD 研究中三种抗抑郁药治疗患者的反应模式,并采用最先进的机器学习(ML)工具生成预测算法。为了验证我们的结果,我们评估了算法在 STARD 中另一组 530 名患者中的个体抗抑郁药反应预测能力,该组包括 271 名验证组患者和 259 名最终测试组患者。这项评估在验证和测试组中得出了平均平衡准确率分别为 72.3%(SD 8.1)和 70.1%(SD 6.8)(所有模型均为 p<0.01)。为了进一步验证我们的设计方案,我们从接受西酞普兰治疗的患者的 Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic 研究(PGRN-AMPS)中获取数据,并应用了算法的西酞普兰模型。这种外部验证在 STAR*D 和 PGRN-AMPS 测试组中产生了非常相似的结果,平衡准确率分别为 60.5%和 61.3%(均为 p<0.01)。这些发现支持使用 ML 算法应用于具有遗传、临床和人口统计学特征的大型数据集来提高抗抑郁药处方准确性的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5a/8266902/f5d8d1afc11f/41398_2021_1488_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索