Suppr超能文献

基于深度学习的无注释胚胎评分系统在单次玻璃化冷冻解冻囊胚移植后的妊娠预测性能:一项单中心大样本回顾性研究。

Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study.

机构信息

Kato Ladies Clinic, Tokyo, Japan.

Vitrolife, Aarhus, Denmark.

出版信息

Fertil Steril. 2021 Oct;116(4):1172-1180. doi: 10.1016/j.fertnstert.2021.06.001. Epub 2021 Jul 8.

Abstract

OBJECTIVE

To analyze the performance of an annotation-free embryo scoring system on the basis of deep learning for pregnancy prediction after single vitrified blastocyst transfer (SVBT) compared with the performance of other blastocyst grading systems dependent on annotation or morphology scores.

DESIGN

A single-center large cohort retrospective study from an independent validation test.

SETTING

Infertility clinic.

PATIENT(S): Patients who underwent SVBT cycles (3,018 cycles, mean ± SD patient age 39.3 ± 4.0 years).

INTERVENTION(S): None.

MAIN OUTCOME MEASURE(S): The pregnancy prediction performances of each embryo scoring model were compared using the area under curve (AUC) for predicting the fetal heartbeat status for each maternal age group.

RESULT(S): The AUCs of the <35 years age group (n = 389) for pregnancy prediction were 0.72 for iDAScore, 0.66 for KIDScore, and 0.64 for the Gardner criteria. The AUC of iDAScore was significantly greater than those of the other two models. For the 35-37 years age group (n = 514), the AUCs were 0.68, 0.68, and 0.65 for iDAScore, KIDScore, and the Gardner criteria, respectively, and were not significantly different. The AUCs of the 38-40 years age group (n = 796) were 0.67 for iDAScore, 0.65 for KIDScore, and 0.64 for the Gardner criteria, and there were no significant differences. The AUCs of the 41-42 years age group (n = 636) were 0.66, 0.66, and 0.63 for iDAScore, KIDScore, and the Gardner criteria, respectively, and there were no significant differences among the pregnancy prediction models. For the >42 years age group (n = 389), the AUCs were 0.76 for iDAScore, 0.75 for KIDScore, and 0.75 for the Gardner criteria, and there were no significant differences. Thus, iDAScore AUC was either the highest or equal to the highest AUC for all age groups, although a significant difference was observed only in the youngest age group.

CONCLUSION(S): Our results showed that objective embryo assessment by a completely automatic and annotation-free model, iDAScore, performed as well as or even better than more traditional embryo assessment or annotation-dependent ranking tools. iDAScore could be an optimal pregnancy prediction model after SVBT, especially in young patients.

摘要

目的

分析基于深度学习的无注释胚胎评分系统在预测单玻璃化囊胚移植 (SVBT) 后妊娠方面的表现,与依赖注释或形态评分的其他囊胚分级系统的表现进行比较。

设计

来自独立验证试验的单中心大队列回顾性研究。

地点

不孕诊所。

患者

接受 SVBT 周期的患者(3018 个周期,平均 ± SD 患者年龄 39.3 ± 4.0 岁)。

干预

无。

主要观察指标

使用每个母体年龄组预测胎心状态的曲线下面积 (AUC) 比较每个胚胎评分模型的妊娠预测性能。

结果

<35 岁年龄组 (n = 389) 的妊娠预测 AUC 分别为 iDAScore 为 0.72、KIDScore 为 0.66 和 Gardner 标准为 0.64。iDAScore 的 AUC 明显大于其他两种模型。对于 35-37 岁年龄组 (n = 514),iDAScore、KIDScore 和 Gardner 标准的 AUC 分别为 0.68、0.68 和 0.65,无显著差异。38-40 岁年龄组 (n = 796) 的 AUC 分别为 iDAScore 为 0.67、KIDScore 为 0.65 和 Gardner 标准为 0.64,无显著差异。41-42 岁年龄组 (n = 636) 的 AUC 分别为 iDAScore、KIDScore 和 Gardner 标准为 0.66、0.66 和 0.63,妊娠预测模型之间无显著差异。对于>42 岁年龄组 (n = 389),iDAScore 的 AUC 为 0.76、KIDScore 的 AUC 为 0.75 和 Gardner 标准的 AUC 为 0.75,无显著差异。因此,iDAScore AUC 要么是所有年龄段中最高的,要么与最高 AUC 相等,尽管仅在最年轻的年龄组观察到显著差异。

结论

我们的结果表明,通过完全自动和无注释的模型进行客观胚胎评估,iDAScore 的表现与更传统的胚胎评估或注释依赖的分级工具一样好,甚至更好。iDAScore 可能是 SVBT 后预测妊娠的最佳模型,尤其是在年轻患者中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验