聚(ADP-核糖)水解逆转的三个步骤的机制见解。

Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal.

机构信息

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.

Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands.

出版信息

Nat Commun. 2021 Jul 28;12(1):4581. doi: 10.1038/s41467-021-24723-3.

Abstract

Poly(ADP-ribosyl)ation (PAR) is a versatile and complex posttranslational modification composed of repeating units of ADP-ribose arranged into linear or branched polymers. This scaffold is linked to the regulation of many of cellular processes including the DNA damage response, alteration of chromatin structure and Wnt signalling. Despite decades of research, the principles and mechanisms underlying all steps of PAR removal remain actively studied. In this work, we synthesise well-defined PAR branch point molecules and demonstrate that PARG, but not ARH3, can resolve this distinct PAR architecture. Structural analysis of ARH3 in complex with dimeric ADP-ribose as well as an ADP-ribosylated peptide reveal the molecular basis for the hydrolysis of linear and terminal ADP-ribose linkages. We find that ARH3-dependent hydrolysis requires both rearrangement of a catalytic glutamate and induction of an unusual, square-pyramidal magnesium coordination geometry.

摘要

聚(ADP-核糖)化(PAR)是一种多功能且复杂的翻译后修饰,由 ADP-核糖的重复单元组成,排列成线性或支链聚合物。该支架与许多细胞过程的调节有关,包括 DNA 损伤反应、染色质结构的改变和 Wnt 信号传导。尽管经过几十年的研究,PAR 去除的所有步骤的原理和机制仍在积极研究中。在这项工作中,我们合成了定义明确的 PAR 分支点分子,并证明只有 PARG,而不是 ARH3,可以解决这种独特的 PAR 结构。我们对 ARH3 与二聚 ADP-核糖以及 ADP-核糖化肽的复合物进行了结构分析,揭示了水解线性和末端 ADP-核糖键的分子基础。我们发现,ARH3 依赖性水解需要催化谷氨酸的重排以及诱导不寻常的、四方锥型镁配位几何形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f267/8319183/ee8424f90bc9/41467_2021_24723_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索