毒力效应蛋白SidJ在体内的进化是由正选择和基因内重组驱动的。

Virulence effector SidJ evolution in is driven by positive selection and intragenic recombination.

作者信息

Zhan Xiao-Yong, Yang Jin-Lei, Zhou Xuefu, Qian Yi-Chao, Huang Ke, Sun Honghua, Wang Huacheng, Leng Yang, Huang Bihui, He Yulong

机构信息

The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.

出版信息

PeerJ. 2021 Aug 17;9:e12000. doi: 10.7717/peerj.12000. eCollection 2021.

Abstract

Effector proteins translocated by the Dot/Icm type IV secretion system determine the virulence of (). Among these effectors, members of the SidE family (SidEs) regulate several cellular processes through a unique phosphoribosyl ubiquitination mechanism mediated by another effector, SidJ. Host-cell calmodulin (CaM) activates SidJ to glutamylate the SidEs of ubiquitin (Ub) ligases and to make a balanced Ub ligase activity. Given the central role of SidJ in this regulatory process, studying the nature of evolution of is important to understand the virulence of and the interaction between the bacteria and its hosts. By studying from a large number of strains and using various molecular evolution algorithms, we demonstrated that intragenic recombination drove the evolution of and contributed to diversification. Additionally, we showed that four codons of which are located in the N-terminal (NTD) (codons 58 and 200) and C-terminal (CTD) (codons 868 and 869) domains, but not in the kinase domain (KD) had been subjected to strong positive selection pressure, and variable mutation profiles of these codons were identified. Protein structural modeling of SidJ provided possible explanations for these mutations. Codons 868 and 869 mutations might engage in regulating the interactions of SidJ with CaM through hydrogen bonds and affect the CaM docking to SidJ. Mutation in codon 58 of SidJ might affect the distribution of main-chain atoms that are associated with the interaction with CaM. In contrast, mutations in codon 200 might influence the -helix stability in the NTD. These mutations might be important to balance Ub ligase activity for different hosts. This study first reported that intragenic recombination and positive Darwinian selection both shaped the genetic plasticity of , contributing to a deeper understanding of the adaptive mechanisms of this intracellular bacterium to different hosts.

摘要

由Dot/Icm IV型分泌系统转运的效应蛋白决定了()的毒力。在这些效应蛋白中,SidE家族成员(SidEs)通过由另一种效应蛋白SidJ介导的独特磷酸核糖基泛素化机制调节多种细胞过程。宿主细胞钙调蛋白(CaM)激活SidJ,使其对泛素(Ub)连接酶的SidEs进行谷氨酰胺化,并产生平衡的Ub连接酶活性。鉴于SidJ在这一调节过程中的核心作用,研究()的进化本质对于理解()的毒力以及细菌与其宿主之间的相互作用至关重要。通过研究大量()菌株的()并使用各种分子进化算法,我们证明基因内重组驱动了()的进化并促成了()的多样化。此外,我们表明,()位于N端(NTD)(密码子58和200)和C端(CTD)(密码子868和869)结构域而非激酶结构域(KD)的四个密码子受到了强烈的正选择压力,并鉴定了这些密码子的可变突变谱。SidJ的蛋白质结构建模为这些突变提供了可能的解释。密码子868和869的突变可能通过氢键参与调节SidJ与CaM的相互作用,并影响CaM与SidJ的对接。SidJ密码子58的突变可能影响与CaM相互作用相关的主链原子分布。相反,密码子200的突变可能影响NTD中α螺旋的稳定性。这些突变可能对平衡不同()宿主的Ub连接酶活性很重要。本研究首次报道基因内重组和达尔文正选择共同塑造了()的遗传可塑性,有助于更深入地理解这种细胞内细菌对不同宿主的适应机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d679/8378335/f8c21770e85e/peerj-09-12000-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索