自推进磁性伊利石微球主动且选择性地从受污染水中去除 Cs。

Active and selective removal of Cs from contaminated water by self-propelled magnetic illite microspheres.

机构信息

Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea.

Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Republic of Korea; Department of Environmental Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.

出版信息

J Hazard Mater. 2021 Aug 15;416:126226. doi: 10.1016/j.jhazmat.2021.126226. Epub 2021 May 26.

Abstract

We report the fabrication of clay-mineral-based Janus microspheres that exhibit remotely steerable self-propulsion in water, facilitating their selective and active removal of radiocesium from a contaminated solution. The spray-drying of slurries of intrinsically Cs-selective illite containing iron oxide nanoparticles led to magnetic illite microspheres with superior Cs adsorption capability and superparamagnetic behavior. The Janus micromotor adsorbent was prepared by depositing catalytic Pt onto the half-surface of magnetic illite microspheres. The micromotor adsorbents exhibited self-propulsion at speeds as high as ~265 µm/s via asymmetric bubble generation in water containing HO as a fuel. The self-propulsion of the adsorbent improved the Cs adsorption kinetics six-folds compared with the kinetics in the corresponding stationary liquid. The magnetic properties of the micromotor adsorbent enabled convenient separation and direction control of the adsorbents under an external magnetic field. In particular, the micromotor adsorbent could successfully remove more than 98.6% of Cs from aqueous media containing competing ions including K, Na, Ca and Mg.

摘要

我们报告了基于粘土矿物的 Janus 微球的制造,这些微球在水中表现出可远程控制的自推进性,有利于它们从污染溶液中选择性和主动去除放射性铯。通过喷雾干燥含有氧化铁纳米粒子的固有 Cs 选择性伊利石的浆料,得到了具有优异 Cs 吸附能力和超顺磁性的磁性伊利石微球。Janus 微电机吸附剂是通过在磁性伊利石微球的半表面上沉积催化 Pt 制备的。微电机吸附剂通过在含有 HO 作为燃料的水中不对称气泡生成,以高达约 265 µm/s 的速度自推进。与相应的静止液体中的动力学相比,吸附剂的自推进将 Cs 吸附动力学提高了六倍。微电机吸附剂的磁性使得在外磁场下方便地分离和控制吸附剂。特别是,微电机吸附剂可以成功地从含有竞争离子(包括 K、Na、Ca 和 Mg)的水溶液中去除超过 98.6%的 Cs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索