可穿戴式集成 EEG-fNIRS 技术:综述
Wearable, Integrated EEG-fNIRS Technologies: A Review.
机构信息
DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK.
出版信息
Sensors (Basel). 2021 Sep 12;21(18):6106. doi: 10.3390/s21186106.
There has been considerable interest in applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) simultaneously for multimodal assessment of brain function. EEG-fNIRS can provide a comprehensive picture of brain electrical and hemodynamic function and has been applied across various fields of brain science. The development of wearable, mechanically and electrically integrated EEG-fNIRS technology is a critical next step in the evolution of this field. A suitable system design could significantly increase the data/image quality, the wearability, patient/subject comfort, and capability for long-term monitoring. Here, we present a concise, yet comprehensive, review of the progress that has been made toward achieving a wearable, integrated EEG-fNIRS system. Significant marks of progress include the development of both discrete component-based and microchip-based EEG-fNIRS technologies; modular systems; miniaturized, lightweight form factors; wireless capabilities; and shared analogue-to-digital converter (ADC) architecture between fNIRS and EEG data acquisitions. In describing the attributes, advantages, and disadvantages of current technologies, this review aims to provide a roadmap toward the next generation of wearable, integrated EEG-fNIRS systems.
人们对同时应用脑电图(EEG)和功能近红外光谱(fNIRS)进行脑功能的多模态评估产生了浓厚的兴趣。EEG-fNIRS 可以提供脑电和血液动力学功能的综合图像,已应用于脑科学的各个领域。可穿戴、机械和电气集成 EEG-fNIRS 技术的发展是该领域发展的关键下一步。合适的系统设计可以显著提高数据/图像质量、可穿戴性、患者/受试者舒适度以及进行长期监测的能力。在这里,我们对实现可穿戴、集成 EEG-fNIRS 系统所取得的进展进行了简洁而全面的回顾。显著的进展标志包括离散组件和微芯片基 EEG-fNIRS 技术的发展;模块化系统;小型化、轻量化的外形尺寸;无线功能;以及 fNIRS 和 EEG 数据采集之间共享模拟数字转换器(ADC)架构。在描述当前技术的属性、优点和缺点时,本综述旨在为下一代可穿戴、集成 EEG-fNIRS 系统提供路线图。