基于血中性粒细胞和人口统计学参数作为危险因素预测 COPD 加重住院患者的金标准。

Prediction of gold stage in patients hospitalized with COPD exacerbations using blood neutrophils and demographic parameters as risk factors.

机构信息

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, People's Republic of China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China.

出版信息

BMC Pulm Med. 2021 Oct 21;21(1):329. doi: 10.1186/s12890-021-01696-z.

Abstract

BACKGROUND

Patients hospitalized with chronic obstructive pulmonary disease (COPD) exacerbations are unable to complete the pulmonary function test reliably due to their poor health conditions. Creating an easy-to-use instrument to identify the Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage will offer valuable information that assists clinicians to choose appropriate clinical care to decrease the mortality in these patients. The objective of this study was to develop a prediction model to identify the GOLD stage in the hospitalized exacerbation of chronic obstructive pulmonary disease (ECOPD) patients.

METHODS

This prospective study involved 155 patients hospitalized for ECOPD. All participants completed lung function tests and the collection of blood neutrophils and demographic parameters. Receiver operating characteristic (ROC) curve was plotted based on the data of 155 patients, and was used to analyze the disease severity predictive capability of blood neutrophils and demographic parameters. A support vector regression (SVR) based GOLD stage prediction model was built using the training data set (75%), whose accuracy was then verified by the testing data set (25%).

RESULTS

The percentage of blood neutrophils (denoted as NEU%) combined with the demographic parameters was associated with a higher risk to severe episode of ECOPD. The area under the ROC curve was 0.84. The SVR model managed to predict the GOLD stage with an accuracy of 90.24%. The root-mean-square error (RMSE) of the forced expiratory volume in one second as the percentage of the predicted value (denoted as FEV%pred) was 8.84%.

CONCLUSIONS

The NEU% and demographic parameters are associated with the pulmonary function of the hospitalized ECOPD patients. The established prediction model could assist clinicians in diagnosing GOLD stage and planning appropriate clinical care.

摘要

背景

患有慢性阻塞性肺疾病(COPD)加重的患者由于健康状况不佳,无法可靠地完成肺功能测试。创建一种易于使用的仪器来识别全球慢性阻塞性肺疾病倡议(GOLD)阶段将提供有价值的信息,帮助临床医生选择适当的临床护理,以降低这些患者的死亡率。本研究的目的是开发一种预测模型,以识别住院慢性阻塞性肺疾病加重(ECOPD)患者的 GOLD 分期。

方法

本前瞻性研究纳入了 155 名因 ECOPD 住院的患者。所有参与者均完成了肺功能测试以及血液中性粒细胞和人口统计学参数的采集。根据 155 名患者的数据绘制了接受者操作特征(ROC)曲线,并用于分析血液中性粒细胞和人口统计学参数对疾病严重程度的预测能力。使用训练数据集(75%)构建了基于支持向量回归(SVR)的 GOLD 分期预测模型,然后使用测试数据集(25%)验证其准确性。

结果

血液中性粒细胞(表示为 NEU%)百分比与人口统计学参数相结合与 ECOPD 严重发作的风险较高相关。ROC 曲线下面积为 0.84。SVR 模型成功预测了 GOLD 分期,准确率为 90.24%。预测值的 1 秒用力呼气量(FEV%pred)的均方根误差(RMSE)为 8.84%。

结论

NEU%和人口统计学参数与住院 ECOPD 患者的肺功能有关。所建立的预测模型可以帮助临床医生诊断 GOLD 分期并制定适当的临床护理计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7546/8532260/f251d3d92874/12890_2021_1696_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索