风险因素模型的推导和验证,以识别有静脉血栓栓塞风险的住院患者。

Derivation and Validation of a Risk Factor Model to Identify Medical Inpatients at Risk for Venous Thromboembolism.

机构信息

Center for Value-Based Care Research, Cleveland Clinic, Cleveland, Ohio, United States.

Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio, United States.

出版信息

Thromb Haemost. 2022 Jul;122(7):1231-1238. doi: 10.1055/a-1698-6506. Epub 2021 Nov 16.

Abstract

BACKGROUND

Venous thromboembolism (VTE) prophylaxis is recommended for hospitalized medical patients at high risk for VTE. Multiple risk assessment models exist, but few have been compared in large datasets.

METHODS

We constructed a derivation cohort using 6 years of data from 12 hospitals to identify risk factors associated with developing VTE within 14 days of admission. VTE was identified using a complex algorithm combining administrative codes and clinical data. We developed a multivariable prediction model and applied it to three validation cohorts: a temporal cohort, including two additional years, a cross-validation, in which we refit the model excluding one hospital each time, applying the refitted model to the holdout hospital, and an external cohort. Performance was evaluated using the C-statistic.

RESULTS

The derivation cohort included 155,026 patients with a 14-day VTE rate of 0.68%. The final multivariable model contained 13 patient risk factors. The model had an optimism corrected C-statistic of 0.79 and good calibration. The temporal validation cohort included 53,210 patients, with a VTE rate of 0.64%; the external cohort had 23,413 patients and a rate of 0.49%. Based on the C-statistic, the Cleveland Clinic Model (CCM) outperformed both the Padua (0.76 vs. 0.72,  = 0.002) and IMPROVE (0.68,  < 0.001) models in the temporal cohort. C-statistics for the CCM at individual hospitals ranged from 0.68 to 0.78. In the external cohort, the CCM C-statistic was similar to Padua (0.70 vs. 0.66,  = 0.17) and outperformed IMPROVE (0.59,  < 0.001).

CONCLUSION

A new VTE risk assessment model outperformed recommended models.

摘要

背景

静脉血栓栓塞症(VTE)预防适用于有发生 VTE 高风险的住院内科患者。有多种风险评估模型,但很少有在大型数据集进行比较。

方法

我们利用来自 12 家医院 6 年的数据构建了一个推导队列,以确定入院后 14 天内发生 VTE 的相关风险因素。VTE 通过一种结合了行政代码和临床数据的复杂算法进行识别。我们开发了一个多变量预测模型,并将其应用于三个验证队列:一个时间队列,包括另外两年的数据;一个交叉验证,每次排除一家医院重新拟合模型,然后将重新拟合的模型应用于保留的医院;以及一个外部队列。使用 C 统计量评估性能。

结果

推导队列包括 155026 名患者,14 天 VTE 发生率为 0.68%。最终的多变量模型包含 13 个患者风险因素。该模型的校正后 C 统计量为 0.79,校准良好。时间验证队列包括 53210 名患者,VTE 发生率为 0.64%;外部队列包括 23413 名患者,VTE 发生率为 0.49%。基于 C 统计量,克利夫兰诊所模型(CCM)在时间队列中的表现优于帕多瓦(0.76 比 0.72,=0.002)和 IMPROVE 模型(0.68,<0.001)。CCM 在各个医院的 C 统计量范围为 0.68 至 0.78。在外部队列中,CCM 的 C 统计量与帕多瓦相似(0.70 比 0.66,=0.17),优于 IMPROVE(0.59,<0.001)。

结论

一种新的 VTE 风险评估模型优于推荐模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索