IgG N-聚糖。

IgG N-glycans.

机构信息

Key Laboratory for Biomedical Photonics of MOE, Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.

Key Laboratory for Biomedical Photonics of MOE, Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Adv Clin Chem. 2021;105:1-47. doi: 10.1016/bs.acc.2021.02.001. Epub 2021 Mar 18.

Abstract

Glycosylation, one of the most common post-translational modifications in mammalian cells, impacts many biological processes such as cell adhesion, proliferation and differentiation. As the most abundant glycoprotein in human serum, immunoglobulin G (IgG) plays a vital role in immune response and protection. There is a growing body of evidence suggests that IgG structure and function are modulated by attached glycans, especially N-glycans, and aberrant glycosylation is associated with disease states. In this chapter, we review IgG glycan repertoire and function, strategies for profiling IgG N-glycome and recent studies. Mass spectrometry (MS) based techniques are the most powerful tools for profiling IgG glycome. IgG glycans can be divided into high-mannose, biantennary complex and hybrid types, modified with mannosylation, core-fucosylation, galactosylation, bisecting GlcNAcylation, or sialylation. Glycosylation of IgG affects antibody half-life and their affinity and avidity for antigens, regulates crystallizable fragment (Fc) structure and Fcγ receptor signaling, as well as antibody effector function. Because of their critical roles, IgG N-glycans appear to be promising biomarkers for various disease states. Specific IgG glycosylation can convert a pro-inflammatory response to an anti-inflammatory activity. Accordingly, IgG glycoengineering provides a powerful approach to potentially develop effective drugs and treat disease. Based on the understanding of the functional role of IgG glycans, the development of vaccines with enhanced capacity and long-term protection are possible in the near future.

摘要

糖基化是哺乳动物细胞中最常见的翻译后修饰之一,影响许多生物过程,如细胞黏附、增殖和分化。免疫球蛋白 G(IgG)作为血清中最丰富的糖蛋白,在免疫反应和保护中起着至关重要的作用。越来越多的证据表明,IgG 的结构和功能受附着的聚糖(尤其是 N-聚糖)调节,异常的糖基化与疾病状态有关。在本章中,我们回顾了 IgG 聚糖组和功能、IgG N-聚糖分析策略以及最近的研究。基于质谱(MS)的技术是分析 IgG 聚糖组的最有力工具。IgG 聚糖可分为高甘露糖型、双天线复合型和杂合型,经过甘露糖基化、核心岩藻糖化、半乳糖基化、双分支 GlcNAc 化或唾液酸化修饰。IgG 的糖基化影响抗体的半衰期及其与抗原的亲和力和亲合力,调节可结晶片段(Fc)结构和 Fcγ 受体信号转导,以及抗体效应功能。由于其关键作用,IgG N-聚糖似乎是各种疾病状态有前途的生物标志物。特定的 IgG 糖基化可以将促炎反应转化为抗炎活性。因此,IgG 糖基工程提供了一种有潜力开发有效药物和治疗疾病的强大方法。基于对 IgG 聚糖功能作用的理解,未来可能会开发出具有增强能力和长期保护作用的疫苗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索