基于图形深度学习的脑功能连接分析
Brain Functional Connectivity Analysis via Graphical Deep Learning.
作者信息
Qu Gang, Hu Wenxing, Xiao Li, Wang Junqi, Bai Yuntong, Patel Beenish, Zhang Kun, Wang Yu-Ping
出版信息
IEEE Trans Biomed Eng. 2022 May;69(5):1696-1706. doi: 10.1109/TBME.2021.3127173. Epub 2022 Apr 21.
OBJECTIVE
Graphical deep learning models provide a desirable way for brain functional connectivity analysis. However, the application of current graph deep learning models to brain network analysis is challenging due to the limited sample size and complex relationships between different brain regions.
METHOD
In this work, a graph convolutional network (GCN) based framework is proposed by exploiting the information from both region-to-region connectivities of the brain and subject-subject relationships. We first construct an affinity subject-subject graph followed by GCN analysis. A Laplacian regularization term is introduced in our model to tackle the overfitting problem. We apply and validate the proposed model to the Philadelphia Neurodevelopmental Cohort for the brain cognition study.
RESULTS
Experimental analysis shows that our proposed framework outperforms other competing models in classifying groups with low and high Wide Range Achievement Test (WRAT) scores. Moreover, to examine each brain region's contribution to cognitive function, we use the occlusion sensitivity analysis method to identify cognition-related brain functional networks. The results are consistent with previous research yet yield new findings.
CONCLUSION AND SIGNIFICANCE
Our study demonstrates that GCN incorporating prior knowledge about brain networks offers a powerful way to detect important brain networks and regions associated with cognitive functions.
目的
图形深度学习模型为脑功能连接分析提供了一种理想的方法。然而,由于样本量有限以及不同脑区之间复杂的关系,当前的图形深度学习模型在脑网络分析中的应用具有挑战性。
方法
在这项工作中,通过利用来自脑区与脑区之间的连接以及个体与个体之间关系的信息,提出了一种基于图卷积网络(GCN)的框架。我们首先构建一个亲和性个体与个体图,然后进行GCN分析。在我们的模型中引入了拉普拉斯正则化项来解决过拟合问题。我们将所提出的模型应用于费城神经发育队列进行脑认知研究并进行验证。
结果
实验分析表明,我们提出的框架在对宽范围成就测验(WRAT)分数低和高的组进行分类时优于其他竞争模型。此外,为了检查每个脑区对认知功能的贡献,我们使用遮挡敏感性分析方法来识别与认知相关的脑功能网络。结果与先前的研究一致,但也产生了新的发现。
结论与意义
我们的研究表明,结合脑网络先验知识的GCN为检测与认知功能相关的重要脑网络和区域提供了一种强大的方法。