微管蛋白酪氨酸化调节突触功能,并在阿尔茨海默病中失调。
Tubulin tyrosination regulates synaptic function and is disrupted in Alzheimer's disease.
机构信息
Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
出版信息
Brain. 2022 Jul 29;145(7):2486-2506. doi: 10.1093/brain/awab436.
Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-β peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-β peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-β peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.
微管在维持神经元过程和突触功能及可塑性方面发挥着基本作用。虽然动态微管主要由酪氨酸化微管组成,但长寿命微管含有去酪氨酸化微管,这表明微管的酪氨酸化/去酪氨酸化循环是维持微管动力学和神经元内稳态的关键因素,而这种内稳态在神经退行性疾病中会失调。在酪氨酸化/去酪氨酸化循环中,α-微管的 C 端酪氨酸被微管羧肽酶去除,并由微管酪氨酸连接酶(TTL)重新添加。在这里,我们发现 TTL 杂合子小鼠表现出酪氨酸化微管减少、树突棘密度降低以及突触可塑性和记忆缺陷。我们进一步报告了散发性和家族性阿尔茨海默病中 TTL 表达减少,以及携带家族性 APP-V717I 突变的人神经元中微管动力学降低。最后,我们发现,被动态微管访问的突触对寡聚淀粉样β肽毒性更具抵抗力,而 TTL 的表达通过恢复微管进入棘突,抑制了由淀粉样β肽诱导的突触丢失。总之,我们的研究结果表明,平衡的酪氨酸化/去酪氨酸化微管循环对于维持突触可塑性是必要的,可预防淀粉样β肽诱导的突触损伤,而这种平衡在阿尔茨海默病中丢失,这为微管重新酪氨酸化缺陷可能导致阿尔茨海默病神经退行性过程中的电路功能障碍提供了证据。