大流行应对腺病毒载体和RNA疫苗生产。

Pandemic-response adenoviral vector and RNA vaccine manufacturing.

作者信息

Kis Zoltán, Tak Kyungjae, Ibrahim Dauda, Papathanasiou Maria M, Chachuat Benoît, Shah Nilay, Kontoravdi Cleo

机构信息

The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.

Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.

出版信息

NPJ Vaccines. 2022 Mar 2;7(1):29. doi: 10.1038/s41541-022-00447-3.

Abstract

Rapid global COVID-19 pandemic response by mass vaccination is currently limited by the rate of vaccine manufacturing. This study presents a techno-economic feasibility assessment and comparison of three vaccine production platform technologies deployed during the COVID-19 pandemic: (1) adenovirus-vectored (AVV) vaccines, (2) messenger RNA (mRNA) vaccines, and (3) the newer self-amplifying RNA (saRNA) vaccines. Besides assessing the baseline performance of the production process, impact of key design and operational uncertainties on the productivity and cost performance of these vaccine platforms is quantified using variance-based global sensitivity analysis. Cost and resource requirement projections are computed for manufacturing multi-billion vaccine doses for covering the current global demand shortage and for providing annual booster immunisations. The model-based assessment provides key insights to policymakers and vaccine manufacturers for risk analysis, asset utilisation, directions for future technology improvements and future epidemic/pandemic preparedness, given the disease-agnostic nature of these vaccine production platforms.

摘要

目前,通过大规模接种疫苗对全球新冠疫情做出的快速响应受到疫苗生产速度的限制。本研究对新冠疫情期间部署的三种疫苗生产平台技术进行了技术经济可行性评估和比较:(1)腺病毒载体(AVV)疫苗,(2)信使核糖核酸(mRNA)疫苗,以及(3)更新的自扩增核糖核酸(saRNA)疫苗。除了评估生产过程的基线性能外,还使用基于方差的全局敏感性分析量化了关键设计和操作不确定性对这些疫苗平台的生产率和成本性能的影响。计算了生产数十亿剂疫苗以满足当前全球需求短缺以及提供年度加强免疫所需的成本和资源。鉴于这些疫苗生产平台与疾病无关的性质,基于模型的评估为政策制定者和疫苗制造商提供了关键见解,以便进行风险分析、资产利用、未来技术改进方向以及未来疫情防范。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a61/8891260/5b7d9fdd6c5b/41541_2022_447_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索