离子型组合囊泡:一种与生命融合的新型仿生囊泡。
Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life.
机构信息
DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.
Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany.
出版信息
Adv Sci (Weinh). 2022 Jun;9(17):e2200617. doi: 10.1002/advs.202200617. Epub 2022 Apr 7.
The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self-assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i-combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self-assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic-like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to "hijack" their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i-combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.
构建能够忠实地捕捉细胞膜特性和动态功能的生物膜,仍然是合成细胞及其应用发展中的一个挑战。在这里,我们引入了一种基于两亲梳状聚合物自组装成囊泡的合成细胞膜的新概念,称为离子梳状囊泡(i-combisomes)。这些梳状聚合物由聚两性离子主链组成,通过静电相互作用与疏水尾相连。使用一系列显微镜和分子模拟方法,筛选了一系列梳状聚合物在水中的自组装。研究发现,疏水尾形成了膜的核心,并迫使主链形成棒状构象,向列有序被限制在与水的界面内。这种特殊的组织导致了具有经典聚合物稳定性的膜,同时具有脂质体的仿生厚度、灵活性和横向流动性。这种无与伦比的生物物理性质匹配以及局部重构其组成部分的分子拓扑结构的能力,使得能够容纳天然膜的功能组件,并与活细菌融合以“劫持”其外围。这为设计 i-combisomes 膜的化学和生物学组成提供了几乎用之不竭的调色板,从而为基础研究和技术应用提供了一个强大的平台。