Suppr超能文献

借鉴成人研究的经验:人工智能算法在儿科脑肿瘤分割中的可转移性

Borrowing strength from adults: Transferability of AI algorithms for paediatric brain and tumour segmentation.

作者信息

Drai Maxime, Testud Benoit, Brun Gilles, Hak Jean-François, Scavarda Didier, Girard Nadine, Stellmann Jan-Patrick

机构信息

APHM La Timone, Department of Neuroradiology, Marseille, France.

APHM La Timone, Department of Neuroradiology, Marseille, France; Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France; APHM La Timone, CEMEREM, Marseille, France.

出版信息

Eur J Radiol. 2022 Jun;151:110291. doi: 10.1016/j.ejrad.2022.110291. Epub 2022 Apr 4.

Abstract

PURPOSE

AI brain tumour segmentation and brain extraction algorithms promise better diagnostic and follow-up of brain tumours in adults. The development of such tools for paediatric populations is restricted by limited training data but careful adaption of adult algorithms to paediatric population might be a solution. Here, we aim exploring the transferability of algorithms for brain (HD-BET) and tumour segmentation (HD-GLIOMA) in adults to paediatric imaging studies.

METHOD

In a retrospective cohort, we compared automated segmentation with expert masks. We used the dice coefficient for evaluating the similarity and multivariate regressions for the influence of covariates. We explored the feasibility of automatic tumor classification based on diffusion data.

RESULTS

In 42 patients (mean age 7 years, 9 below 2 years, 26 males), segmentation was excellent for brain extraction (mean dice 0.99, range 0.85-1), moderate for segmentation of contrast-enhancing tumours (mean dice 0.67, range 0-1), and weak for non-enhancing T2-signal abnormalities (mean dice 0.41). Precision was better for enhancing tumour parts (p < 0.001) and for malignant histology (p = 0.006 and p = 0.012) but independent from myelinisation as indicated by the age (p = 0.472). Automated tumour grading based on mean diffusivity (MD) values from automated masks was good (AUC = 0.86) but tended to be less accurate than MD values from expert masks (AUC = 1, p = 0.208).

CONCLUSION

HD-BET provides a reliable extraction of the paediatric brain. HD-GLIOMA works moderately for contrast-enhancing tumours parts. Without optimization, brain tumor AI algorithms trained on adults and used on paediatric patients may yield acceptable results depending on the clinical scenario.

摘要

目的

人工智能脑肿瘤分割和脑提取算法有望改善成人脑肿瘤的诊断和随访。此类工具在儿科人群中的开发受到训练数据有限的限制,但将成人算法谨慎地应用于儿科人群可能是一种解决方案。在此,我们旨在探索成人脑(HD - BET)和肿瘤分割(HD - GLIOMA)算法在儿科影像研究中的可转移性。

方法

在一项回顾性队列研究中,我们将自动分割结果与专家标注进行比较。我们使用骰子系数评估相似性,并使用多元回归分析协变量的影响。我们探索了基于扩散数据进行自动肿瘤分类的可行性。

结果

在42例患者(平均年龄7岁,9例年龄低于2岁,26例男性)中,脑提取的分割效果极佳(平均骰子系数0.99,范围0.85 - 1),增强肿瘤分割效果中等(平均骰子系数0.67,范围0 - 1),非增强T2信号异常分割效果较差(平均骰子系数0.41)。增强肿瘤部分(p < 0.001)和恶性组织学(p = 0.006和p = 0.012)的分割精度更高,但与年龄所反映的髓鞘形成无关(p = 0.472)。基于自动标注的平均扩散率(MD)值进行的自动肿瘤分级效果良好(AUC = 0.86),但往往不如专家标注的MD值准确(AUC = 1,p = 0.208)。

结论

HD - BET能可靠地提取儿科脑。HD - GLIOMA对增强肿瘤部分的分割效果中等。未经优化的、基于成人训练且应用于儿科患者的脑肿瘤人工智能算法,根据临床情况可能会产生可接受的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验