Suppr超能文献

通过接枝聚乙二醇-聚乳酸-羟基乙酸共聚物-核黄素对智能癌症治疗中最后一代碳纳米管进行分子工程改造。

Molecular engineering of the last-generation CNTs in smart cancer therapy by grafting PEG-PLGA-riboflavin.

作者信息

Sohrabi Somayeh, Khedri Mohammad, Maleki Reza, Keshavarz Moraveji Mostafa

机构信息

Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran

Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN) Tehran Iran.

出版信息

RSC Adv. 2020 Nov 9;10(67):40637-40648. doi: 10.1039/d0ra07500k.

Abstract

In this work, the effect of environment and additives on the self-assembly and delivery of doxorubicin (DOX) have been studied. A microfluidic system with better control over molecular interactions and high surface to volume ratio has superior performance in comparison to the bulk system. Moreover, carbon nanotube (CNT) and CNT-doped structures have a high surface area to incorporate the DOX molecules into a polymer and the presence of functional groups can influence the polymer-drug interactions. In this work, the interactions of DOX with both the polymeric complex and the nanotube structure have been investigated. For quantification of the interactions, H-bonding, gyration radius, root-mean-square deviation (RMSD), Gibbs free energy, radial distribution function (RDF), energy, and Solvent Accessible Surface Area (SASA) analyses have been performed. The most stable micelle-DOX interaction is attributed to the presence of BCN in the microfluidic system according to the gyration radius and RMSD. Meanwhile, for DOX-doped CNT interaction the phosphorus-doped CNT in the microfluidic system is more stable. The highest electrostatic interaction can be seen between polymeric micelles and DOX in the presence of BCN. For nanotube-drug interaction, phosphorus-doped carbon nanotubes in the microfluidic system have the largest electrostatic interaction with the DOX. RDF results show that in the microfluidic system, nanotube-DOX affinity is larger than that of nanotube-micelle.

摘要

在本研究中,已对环境和添加剂对阿霉素(DOX)自组装及递送的影响进行了研究。与本体系统相比,微流控系统对分子间相互作用具有更好的控制能力且具有高的表面积与体积比,因而具有卓越的性能。此外,碳纳米管(CNT)及碳纳米管掺杂结构具有高表面积,可将DOX分子整合到聚合物中,且官能团的存在会影响聚合物与药物间的相互作用。在本研究中,已对DOX与聚合物复合物及纳米管结构之间的相互作用进行了研究。为了对相互作用进行量化,已开展了氢键、回转半径、均方根偏差(RMSD)、吉布斯自由能、径向分布函数(RDF)、能量及溶剂可及表面积(SASA)分析。根据回转半径和RMSD,微流控系统中最稳定的胶束 - DOX相互作用归因于硼碳氮(BCN)的存在。同时,对于DOX掺杂的CNT相互作用,微流控系统中磷掺杂的CNT更稳定。在存在BCN的情况下,聚合物胶束与DOX之间可观察到最高的静电相互作用。对于纳米管 - 药物相互作用,微流控系统中磷掺杂的碳纳米管与DOX具有最大的静电相互作用。RDF结果表明,在微流控系统中,纳米管 - DOX亲和力大于纳米管 - 胶束的亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ce6/9057702/2c667f3a227c/d0ra07500k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验