T 细胞形态动力学揭示了三维迁移中的周期性形状振荡。
T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration.
机构信息
Imperial College London, Centre for Integrative Systems Biology and Bioinformatics, London SW7 2BU, UK.
EMBL Australia, Single Molecule Science Node, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
出版信息
J R Soc Interface. 2022 May;19(190):20220081. doi: 10.1098/rsif.2022.0081. Epub 2022 May 11.
T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent advances in lattice light-sheet microscopy to quantitatively explore the three-dimensional morphodynamics of migrating T cells at high spatio-temporal resolution. We first developed a new shape descriptor based on spherical harmonics, incorporating key polarization information of the uropod. We found that the shape space of T cells is low-dimensional. At the behavioural level, run-and-stop migration modes emerge at approximately 150 s, and we mapped the morphodynamic composition of each mode using multiscale wavelet analysis, finding 'stereotyped' motifs. Focusing on the run mode, we found morphodynamics oscillating periodically (every approx. 100 s) that can be broken down into a biphasic process: front-widening with retraction of the uropod, followed by a rearward surface motion and forward extension, where intercalation with the ECM in both of these steps likely facilitates forward motion. Further application of these methods may enable the comparison of T cell migration across different conditions (e.g. differentiation, activation, tissues and drug treatments) and improve the precision of immunotherapeutic development.
T 细胞利用复杂的形态动力学(形态动力学)来迁移到感染和癌变细胞并将其中和。然而,人们对三维细胞外基质(ECM)中和跨时间尺度的迁移过程的定量理解有限。在这里,我们利用晶格光片显微镜的最新进展,以高时空分辨率定量探索迁移 T 细胞的三维形态动力学。我们首先开发了一种基于球谐函数的新形状描述符,该描述符包含尾足的关键极化信息。我们发现 T 细胞的形状空间是低维的。在行为水平上,大约在 150 秒时出现跑停迁移模式,我们使用多尺度小波分析对每种模式的形态动力学组成进行了映射,发现了“刻板”的模式。关注跑的模式,我们发现形态动力学周期性地振荡(每隔约 100 秒),可以分解为双相过程:前缘变宽,尾足缩回,然后是后向表面运动和向前延伸,这两个步骤中与 ECM 的插入可能有助于向前运动。进一步应用这些方法可以比较不同条件下(例如分化、激活、组织和药物治疗)的 T 细胞迁移,并提高免疫治疗开发的精度。