稳健贝叶斯荟萃分析:通过模型平均解决发表偏倚问题。
Robust Bayesian meta-analysis: Addressing publication bias with model-averaging.
机构信息
Department of Psychology, University of Amsterdam.
出版信息
Psychol Methods. 2023 Feb;28(1):107-122. doi: 10.1037/met0000405. Epub 2022 May 19.
Meta-analysis is an important quantitative tool for cumulative science, but its application is frustrated by publication bias. In order to test and adjust for publication bias, we extend model-averaged Bayesian meta-analysis with selection models. The resulting robust Bayesian meta-analysis (RoBMA) methodology does not require all-or-none decisions about the presence of publication bias, can quantify evidence in favor of the absence of publication bias, and performs well under high heterogeneity. By model-averaging over a set of 12 models, RoBMA is relatively robust to model misspecification and simulations show that it outperforms existing methods. We demonstrate that RoBMA finds evidence for the absence of publication bias in Registered Replication Reports and reliably avoids false positives. We provide an implementation in R so that researchers can easily use the new methodology in practice. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
元分析是累积科学的重要定量工具,但由于发表偏倚,其应用受到阻碍。为了检验和调整发表偏倚,我们用选择模型扩展了模型平均贝叶斯元分析。由此产生的稳健贝叶斯元分析(RoBMA)方法不需要对发表偏倚的存在做出全有或全无的决定,可以量化不存在发表偏倚的证据,并且在高度异质性下表现良好。通过对 12 个模型的集合进行模型平均,RoBMA 相对稳健,不会出现模型误置的情况,并且模拟结果表明它优于现有的方法。我们证明 RoBMA 在注册复制报告中发现了不存在发表偏倚的证据,并且可靠地避免了假阳性。我们在 R 中提供了一个实现,以便研究人员可以在实践中轻松使用新方法。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。