膜囊泡对铜绿假单胞菌细胞膜流动性重编程的贡献。
Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa.
机构信息
Université Catholique de Louvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium.
Université Catholique de Louvain, de Duve Institute, CELL Unit and PICT Platform, Brussels, Belgium.
出版信息
mSphere. 2022 Jun 29;7(3):e0018722. doi: 10.1128/msphere.00187-22. Epub 2022 May 23.
Pseudomonas aeruginosa is an opportunistic pathogen capable of resisting environmental insults by applying various strategies, including regulating membrane fluidity and producing membrane vesicles (MVs). This study examined the difference in membrane fluidity between planktonic and biofilm modes of growth in P. aeruginosa and whether the ability to alter membrane rigidity in P. aeruginosa could be transferred via MVs. To this end, planktonic and biofilm P. aeruginosa were compared with respect to the lipid composition of their membranes and their MVs and the expression of genes contributing to alteration of membrane fluidity. Additionally, viscosity maps of the bacterial membrane in planktonic and biofilm lifestyles and under the effect of incubation with bacterial MVs were obtained. Further, the growth rate and biofilm formation capability of P. aeruginosa in the presence of MVs were compared. Results showed that the membrane of the biofilm bacteria is significantly less fluid than the membrane of the planktonic bacteria and is enriched with saturated fatty acids. Moreover, the enzymes involved in altering the structure of existing lipids and favoring membrane rigidification are overexpressed in the biofilm bacteria. MVs of biofilm P. aeruginosa elicit membrane rigidification and delay the bacterial growth in the planktonic lifestyle; conversely, they enhance biofilm development in P. aeruginosa. Overall, the study describes the interplay between the planktonic and biofilm bacteria by shedding light on the role of MVs in altering membrane fluidity. Membrane rigidification is a survival strategy in Pseudomonas aeruginosa exposed to stress. Despite various studies dedicated to the mechanism behind this phenomenon, not much attention has been paid to the contribution of the bacterial membrane vesicles (MVs) in this regard. This study revealed that P. aeruginosa rigidifies its membrane in the biofilm mode of growth. Additionally, the capability of decreasing membrane fluidity is transferable to the bacterial population via the bacterial MVs, resulting in reprogramming of bacterial membrane fluidity. Given the importance of membrane rigidification for decreasing the pathogen's susceptibility to antimicrobials, elucidation of the conditions leading to such biophysicochemical modulation of the P. aeruginosa membrane should be considered for the purpose of developing therapeutic approaches against this resistant pathogen.
铜绿假单胞菌是一种机会性病原体,能够通过应用各种策略来抵抗环境胁迫,包括调节膜流动性和产生膜泡(MVs)。本研究比较了浮游和生物膜生长方式下铜绿假单胞菌的膜流动性差异,以及通过 MVs 改变铜绿假单胞菌膜刚性的能力是否可以转移。为此,比较了浮游和生物膜铜绿假单胞菌的膜脂组成及其 MVs 以及与改变膜流动性相关的基因的表达。此外,获得了浮游和生物膜生活方式以及孵育细菌 MVs 下细菌膜的粘度图。进一步比较了存在 MVs 时铜绿假单胞菌的生长速度和生物膜形成能力。结果表明,生物膜细菌的膜流动性明显低于浮游细菌,并且富含饱和脂肪酸。此外,生物膜细菌中参与改变现有脂质结构和有利于膜刚性化的酶过度表达。生物膜铜绿假单胞菌的 MVs 引起膜刚性化并延迟浮游生活方式中的细菌生长;相反,它们增强了铜绿假单胞菌的生物膜发育。总体而言,该研究通过揭示 MVs 在改变膜流动性中的作用,描述了浮游和生物膜细菌之间的相互作用。 膜刚性化是铜绿假单胞菌在应激下的一种生存策略。尽管有许多研究致力于研究这种现象的机制,但在这方面并没有太多关注细菌膜泡(MVs)的贡献。本研究表明,铜绿假单胞菌在生物膜生长模式下使膜刚性化。此外,通过细菌 MVs 将降低膜流动性的能力转移到细菌群体中,导致细菌膜流动性的重新编程。鉴于膜刚性化对于降低病原体对抗生素的敏感性非常重要,因此应该考虑导致铜绿假单胞菌膜这种生物物理化学调节的条件,以开发针对这种耐药病原体的治疗方法。