Wu Mingjian, Harreiß Christina, Ophus Colin, Johnson Manuel, Fink Rainer H, Spiecker Erdmann
Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, D-91058, Erlangen, Germany.
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA.
Nat Commun. 2022 May 25;13(1):2911. doi: 10.1038/s41467-022-30413-5.
Direct observation of organic molecular nanocrystals and their evolution using electron microscopy is extremely challenging, due to their radiation sensitivity and complex structure. Here, we introduce 4D-scanning confocal electron diffraction (4D-SCED), which enables direct in situ observation of bulk heterojunction (BHJ) thin films. 4D-SCED combines confocal electron optic setup with a pixelated detector to record focused spot-like diffraction patterns with high angular resolution, using an order of magnitude lower dose than previous methods. We apply it to study an active layer in organic solar cells, namely DRCN5T:PCBM BHJ thin films. Structural details of DRCN5T nano-crystallites oriented both in- and out-of-plane are imaged at ~5 nm resolution and dose budget of ~5 e/Å. We use in situ annealing to observe the growth of the donor crystals, evolution of the crystal orientation, and progressive enrichment of PCBM at interfaces. This highly dose-efficient method opens more possibilities for studying beam sensitive soft materials.
由于有机分子纳米晶体的辐射敏感性和复杂结构,利用电子显微镜直接观察它们及其演变极具挑战性。在此,我们引入了4D扫描共聚焦电子衍射(4D-SCED)技术,该技术能够对本体异质结(BHJ)薄膜进行直接原位观察。4D-SCED将共聚焦电子光学装置与像素化探测器相结合,以高角分辨率记录聚焦的点状衍射图案,其使用的剂量比以前的方法低一个数量级。我们将其应用于研究有机太阳能电池中的活性层,即DRCN5T:PCBM BHJ薄膜。以约5nm的分辨率和约5 e/Å的剂量预算对平面内和平面外取向的DRCN5T纳米晶体的结构细节进行成像。我们使用原位退火来观察供体晶体的生长、晶体取向的演变以及界面处PCBM的逐步富集。这种高剂量效率的方法为研究对电子束敏感的软材料开辟了更多可能性。