文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症细胞成像和生物打印应用的荧光羟基磷灰石的表面制造。

Surface-Fabrication of Fluorescent Hydroxyapatite for Cancer Cell Imaging and Bio-Printing Applications.

机构信息

State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.

Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.

出版信息

Biosensors (Basel). 2022 Jun 15;12(6):419. doi: 10.3390/bios12060419.


DOI:10.3390/bios12060419
PMID:35735566
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9221440/
Abstract

Hydroxyapatite (HAP) materials are widely applied as biomedical materials due to their stable performance, low cost, good biocompatibility and biodegradability. Here, a green, fast and efficient strategy was designed to construct a fluorescent nanosystem for cell imaging and drug delivery based on polyethyleneimine (PEI) and functionalized HAP via simple physical adsorption. First, HAP nanorods were functionalized with riboflavin sodium phosphate (HE) to provide them with fluorescence properties based on ligand-exchange process. Next, PEI was attached on the surface of HE-functionalized HAP (HAP-HE@PEI) via electrostatic attraction. The fluorescent HAP-HE@PEI nanosystem could be rapidly taken up by NIH-3T3 fibroblast cells and successfully applied to for cell imaging. Additionally, doxorubicin hydrochloride (DOX) containing HAP-HE@PEI with high loading capacity was prepared, and in-vitro release results show that the maximum release of DOX at pH 5.4 (31.83%) was significantly higher than that at pH 7.2 (9.90%), which can be used as a drug delivery tool for cancer therapy. Finally, HAP-HE@PEI as the 3D inkjet printing ink were printed with GelMA hydrogel, showing a great biocompatible property for 3D cell culture of RAW 264.7 macrophage cells. Altogether, because of the enhanced affinity with the cell membrane of HAP-HE@PEI, this green, fast and efficient strategy may provide a prospective candidate for bio-imaging, drug delivery and bio-printing.

摘要

羟基磷灰石(HAP)材料由于其性能稳定、成本低、生物相容性和可生物降解性好而被广泛应用于生物医学领域。在这里,设计了一种绿色、快速、高效的策略,通过简单的物理吸附作用,基于聚乙烯亚胺(PEI)和功能化 HAP 构建用于细胞成像和药物输送的荧光纳米系统。首先,通过配体交换过程,使 HAP 纳米棒与核黄素磷酸钠(HE)功能化,从而赋予其荧光性能。接下来,通过静电吸引将 PEI 附着在 HE 功能化 HAP(HAP-HE@PEI)的表面上。荧光 HAP-HE@PEI 纳米系统可以被 NIH-3T3 成纤维细胞快速摄取,并成功应用于细胞成像。此外,制备了载有高负载量盐酸阿霉素(DOX)的 HAP-HE@PEI,体外释放结果表明,在 pH 5.4(31.83%)时 DOX 的最大释放量明显高于在 pH 7.2(9.90%)时,可作为癌症治疗的药物输送工具。最后,将 HAP-HE@PEI 用作 3D 喷墨打印墨水与 GelMA 水凝胶一起打印,显示出对 RAW 264.7 巨噬细胞的 3D 细胞培养的良好生物相容性。总之,由于 HAP-HE@PEI 与细胞膜的增强亲和力,这种绿色、快速、高效的策略可能为生物成像、药物输送和生物打印提供有前景的候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/b31c05f929fe/biosensors-12-00419-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/e34f18316067/biosensors-12-00419-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/83109c074ae8/biosensors-12-00419-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/6f0015e8c72c/biosensors-12-00419-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/0ff8c9da3d1e/biosensors-12-00419-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/285071f0a553/biosensors-12-00419-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/101b328dc162/biosensors-12-00419-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/d38762280b4b/biosensors-12-00419-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/882272cc15de/biosensors-12-00419-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/5398f56173ff/biosensors-12-00419-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/6a241a38798d/biosensors-12-00419-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/b31c05f929fe/biosensors-12-00419-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/e34f18316067/biosensors-12-00419-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/83109c074ae8/biosensors-12-00419-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/6f0015e8c72c/biosensors-12-00419-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/0ff8c9da3d1e/biosensors-12-00419-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/285071f0a553/biosensors-12-00419-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/101b328dc162/biosensors-12-00419-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/d38762280b4b/biosensors-12-00419-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/882272cc15de/biosensors-12-00419-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/5398f56173ff/biosensors-12-00419-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/6a241a38798d/biosensors-12-00419-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8308/9221440/b31c05f929fe/biosensors-12-00419-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索