基于高强度胶原蛋白的复合薄膜,通过水溶性重组蜘蛛丝蛋白和水退火进行调控。

High-Strength Collagen-Based Composite Films Regulated by Water-Soluble Recombinant Spider Silk Proteins and Water Annealing.

机构信息

CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.

University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China.

出版信息

ACS Biomater Sci Eng. 2022 Aug 8;8(8):3341-3353. doi: 10.1021/acsbiomaterials.2c00416. Epub 2022 Jul 27.

Abstract

Spider silk has attracted extensive attention in the development of high-performance tissue engineering materials because of its excellent physical properties, biocompatibility, and biodegradability. Although high-molecular-weight recombinant spider silk proteins can be obtained through metabolic engineering of host bacteria, the solubility of the recombinant protein products is always poor. Strong denaturants and organic solvents have thus had to be exploited for their dissolution, and this seriously limits the applications of recombinant spider silk protein-based composite biomaterials. Herein, through adjusting the temperature, ionic strength, and denaturation time during the refolding process, we successfully prepared water-soluble recombinant spider major ampullate spidroin 1 (sMaSp1) with different repeat modules (24mer, 48mer, 72mer, and 96mer). Then, MaSp1 was introduced into the collagen matrix for fabricating MaSp1-collagen composite films. The introduction of spider silk proteins was demonstrated to clearly alter the internal structure of the composite films and improve the mechanical properties of the collagen-based films and turn the opaque protein films into transparency ones. More interestingly, the composite film prepared with sMaSp1 exhibited better performance in mechanical strength and cell adhesion compared to that prepared with water-insoluble MaSp1 (pMaSp1), which might be attributed to the effect of the initial dissolved state of MaSp1 on the microstructure of composite films. Additionally, the molecular weight of MaSp1 was also shown to significantly influence the mechanical strength (enhanced to 1.1- to 2.3-fold) and cell adhesion of composite films, and 72mer of sMaSp1 showed the best physical properties with good bioactivity. This study provides a method to produce recombinant spider silk protein with excellent water solubility, making it possible to utilize this protein under environmentally benign, mild conditions. This paves the way for the application of recombinant spider silk proteins in the development of diverse composite biomaterials.

摘要

蜘蛛丝因其优异的物理性能、生物相容性和可生物降解性而在高性能组织工程材料的开发中引起了广泛关注。尽管可以通过宿主细菌的代谢工程获得高分子量的重组蜘蛛丝蛋白,但重组蛋白产物的溶解性通常较差。因此,必须使用强变性剂和有机溶剂来溶解它们,这严重限制了基于重组蜘蛛丝蛋白的复合生物材料的应用。在此,通过调整复性过程中的温度、离子强度和变性时间,我们成功制备了具有不同重复模块(24mer、48mer、72mer 和 96mer)的水溶性重组蜘蛛丝主要膨体丝蛋白 1(sMaSp1)。然后,将 MaSp1 引入胶原蛋白基质中以制备 MaSp1-胶原蛋白复合膜。结果表明,蜘蛛丝蛋白的引入明显改变了复合膜的内部结构,提高了基于胶原蛋白的膜的机械性能,并使不透明的蛋白膜变为透明。更有趣的是,与不溶性 MaSp1(pMaSp1)相比,用 sMaSp1 制备的复合膜在机械强度和细胞黏附方面表现出更好的性能,这可能归因于 MaSp1 的初始溶解状态对复合膜微观结构的影响。此外,MaSp1 的分子量也显著影响复合膜的机械强度(增强 1.1-2.3 倍)和细胞黏附,并且 72mer 的 sMaSp1 表现出最佳的物理性能和良好的生物活性。该研究提供了一种生产具有优异水溶性的重组蜘蛛丝蛋白的方法,使其能够在环境友好、温和的条件下利用这种蛋白质。这为重组蜘蛛丝蛋白在多种复合生物材料开发中的应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索