设计的脂质体纳米载体是有效的生物膜清除剂。
Designer Liposomic Nanocarriers Are Effective Biofilm Eradicators.
机构信息
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
出版信息
ACS Nano. 2022 Oct 25;16(10):15792-15804. doi: 10.1021/acsnano.2c04232. Epub 2022 Aug 26.
Drug delivery via nanovehicles is successfully employed in several clinical settings, yet bacterial infections, forming microbial communities in the form of biofilms, present a strong challenge to therapeutic treatment due to resistance to conventional antimicrobial therapies. Liposomes can provide a versatile drug-vector strategy for biofilm treatment, but are limited by the need to balance colloidal stability with biofilm penetration. We have discovered a liposomic functionalization strategy, using membrane-embedded moieties of poly[2-(methacryloyloxy)ethyl phosphorylcholine], pMPC, that overcomes this limitation. Such pMPCylation results in liposomic stability equivalent to current functionalization strategies (mostly PEGylation, the present gold-standard), but with strikingly improved cellular uptake and cargo conveyance. Fluorimetry, cryo-electron, and fluorescence microscopies reveal a far-enhanced antibiotic delivery to model biofilms by pMPC-liposomes, followed by faster cytosolic cargo release, resulting in significantly greater biofilm eradication than either PEGylation or free drug. Moreover, this combination of techniques uncovers the molecular mechanism underlying the enhanced interaction with bacteria, indicating it arises from bridging by divalent ions of the zwitterionic groups on the pMPC moieties to the negatively charged lipopolysaccharide chains emanating from the bacterial membranes. Our results point to pMPCylation as a transformative strategy for liposomal functionalization, leading to next-generation delivery systems for biofilm treatment.
纳米载体药物输送在多个临床环境中得到了成功应用,但由于对抗生素治疗的耐药性,以生物膜形式形成微生物群落的细菌感染对治疗构成了严重挑战。脂质体可为生物膜治疗提供一种多功能药物载体策略,但由于需要平衡胶体稳定性与生物膜穿透性,因此受到限制。我们发现了一种脂质体功能化策略,使用聚[2-(甲基丙烯酰氧基)乙基磷酸胆碱](pMPC)的膜嵌入部分进行功能化,克服了这一限制。这种 pMPC 化导致脂质体稳定性与当前的功能化策略(主要是聚乙二醇化,目前的金标准)相当,但显著提高了细胞摄取和货物输送。荧光法、冷冻电子显微镜和荧光显微镜揭示了 pMPC 脂质体对模型生物膜的抗生素传递得到了显著增强,随后细胞溶质货物释放更快,导致生物膜清除率显著高于 PEG 化或游离药物。此外,这种组合技术揭示了增强与细菌相互作用的分子机制,表明它源于带正电荷的 pMPC 部分上的两性离子基团通过二价离子与来自细菌膜的带负电荷的脂多糖链桥接。我们的结果表明 pMPC 化是脂质体功能化的变革性策略,为生物膜治疗的下一代递药系统铺平了道路。