Department of Physiology and Cell Biology, Ben Gurion University, Be'er-Sheva 8410501, Israel; Department of Physics, Ben Gurion University, Be'er-Sheva 8410501, Israel; Zlotowski Center for Neuroscience, Ben Gurion University, Be'er-Sheva 8410501, Israel.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
Neuron. 2022 Nov 16;110(22):3833-3851.e22. doi: 10.1016/j.neuron.2022.08.020. Epub 2022 Sep 15.
Rodents explore their environment through coordinated orofacial motor actions, including whisking. Whisking can free-run via an oscillator of inhibitory neurons in the medulla and can be paced by breathing. Yet, the mechanics of the whisking oscillator and its interaction with breathing remain to be understood. We formulate and solve a hierarchical model of the whisking circuit. The first whisk within a breathing cycle is generated by inhalation, which resets a vibrissa oscillator circuit, while subsequent whisks are derived from the oscillator circuit. Our model posits, consistent with experiment, that there are two subpopulations of oscillator neurons. Stronger connections between the subpopulations support rhythmicity, while connections within each subpopulation induce variable spike timing that enhances the dynamic range of rhythm generation. Calculated cycle-to-cycle changes in whisking are consistent with experiment. Our model provides a computational framework to support longstanding observations of concurrent autonomous and driven rhythmic motor actions that comprise behaviors.
啮齿动物通过协调的口腔运动动作探索环境,包括胡须摆动。胡须摆动可以通过延髓中的抑制性神经元振荡器自由运行,并且可以通过呼吸来调节。然而,胡须摆动振荡器的力学及其与呼吸的相互作用仍有待理解。我们制定并解决了一个胡须摆动电路的分层模型。呼吸周期内的第一下胡须摆动是由吸气产生的,它重置了触须振荡器电路,而随后的胡须摆动则源自振荡器电路。我们的模型与实验一致,提出了振荡器神经元存在两个亚群。亚群之间更强的连接支持节律性,而每个亚群内的连接则诱导可变的尖峰定时,从而增强了节律产生的动态范围。计算出的周期到周期的胡须摆动变化与实验一致。我们的模型提供了一个计算框架,支持长期以来对构成行为的自主和驱动的节律运动动作的观察。