利用真实世界数据增强癌症试验的对照臂:混合对照臂方法及考量因素。
Augmenting control arms with real-world data for cancer trials: Hybrid control arm methods and considerations.
作者信息
Tan W Katherine, Segal Brian D, Curtis Melissa D, Baxi Shrujal S, Capra William B, Garrett-Mayer Elizabeth, Hobbs Brian P, Hong David S, Hubbard Rebecca A, Zhu Jiawen, Sarkar Somnath, Samant Meghna
机构信息
Flatiron Health, Inc., New York, NY, 10013, USA.
Genentech, South San Francisco, CA, 94080, USA.
出版信息
Contemp Clin Trials Commun. 2022 Sep 20;30:101000. doi: 10.1016/j.conctc.2022.101000. eCollection 2022 Dec.
BACKGROUND
Hybrid controlled trials with real-world data (RWD), where the control arm is composed of both trial and real-world patients, could facilitate research when the feasibility of randomized controlled trials (RCTs) is challenging and single-arm trials would provide insufficient information.
METHODS
We propose a frequentist two-step borrowing method to construct hybrid control arms. We use parameters informed by a completed randomized trial in metastatic triple-negative breast cancer to simulate the operating characteristics of dynamic and static borrowing methods, highlighting key trade-offs and analytic decisions in the design of hybrid studies.
RESULTS
Simulated data were generated under varying residual-bias assumptions (no bias: HR = 1) and experimental treatment effects (target trial scenario: HR = 0.78). Under the target scenario with no residual bias, all borrowing methods achieved the desired 88% power, an improvement over the reference model (74% power) that does not borrow information externally. The effective number of external events tended to decrease with higher bias between RWD and RCT (i.e. HR away from 1), and with weaker experimental treatment effects (i.e. HR closer to 1). All dynamic borrowing methods illustrated (but not the static power prior) cap the maximum Type 1 error over the residual-bias range considered. Our two-step model achieved comparable results for power, type 1 error, and effective number of external events borrowed compared to other borrowing methodologies.
CONCLUSION
By pairing high-quality external data with rigorous simulations, researchers have the potential to design hybrid controlled trials that better meet the needs of patients and drug development.
背景
采用真实世界数据(RWD)的混合对照试验,其对照臂由试验患者和真实世界患者组成,当随机对照试验(RCT)的可行性具有挑战性且单臂试验提供的信息不足时,有助于开展研究。
方法
我们提出一种基于频率论的两步借用方法来构建混合对照臂。我们使用转移性三阴性乳腺癌一项已完成的随机试验所提供的参数,模拟动态和静态借用方法的操作特征,突出混合研究设计中的关键权衡和分析决策。
结果
在不同的残余偏倚假设(无偏倚:风险比=1)和实验性治疗效果(目标试验情景:风险比=0.78)下生成模拟数据。在无残余偏倚的目标情景下,所有借用方法均达到了预期的88%的检验效能,相较于不外部借用信息的参考模型(检验效能为74%)有所提高。随着RWD与RCT之间的偏倚增大(即风险比偏离1)以及实验性治疗效果减弱(即风险比更接近1),外部事件的有效数量往往会减少。所有展示的动态借用方法(但不包括静态效能先验方法)在考虑的残余偏倚范围内限制了最大I型错误。与其他借用方法相比,我们的两步模型在检验效能、I型错误以及借用的外部事件有效数量方面取得了可比的结果。
结论
通过将高质量的外部数据与严格的模拟相结合,研究人员有潜力设计出更能满足患者需求和药物研发需求的混合对照试验。