Suppr超能文献

间歇性禁食应用程序的保留率、禁食模式和体重减轻:大规模、52 周观察性研究。

Retention, Fasting Patterns, and Weight Loss With an Intermittent Fasting App: Large-Scale, 52-Week Observational Study.

机构信息

LifeOmic, Indianapolis, IN, United States.

Indiana University School of Medicine, Indianapolis, IN, United States.

出版信息

JMIR Mhealth Uhealth. 2022 Oct 4;10(10):e35896. doi: 10.2196/35896.

Abstract

BACKGROUND

Intermittent fasting (IF) is an increasingly popular approach to dietary control that focuses on the timing of eating rather than the quantity and content of caloric intake. IF practitioners typically seek to improve their weight and other health factors. Millions of practitioners have turned to purpose-built mobile apps to help them track and adhere to their fasts and monitor changes in their weight and other biometrics.

OBJECTIVE

This study aimed to quantify user retention, fasting patterns, and weight loss by users of 2 IF mobile apps. We also sought to describe and model starting BMI, amount of fasting, frequency of weight tracking, and other demographics as correlates of retention and weight change.

METHODS

We assembled height, weight, fasting, and demographic data of adult users (ages 18-100 years) of the LIFE Fasting Tracker and LIFE Extend apps from 2018 to 2020. Retention for up to 52 weeks was quantified based on recorded fasts and correlated with user demographics. Users who provided height and at least 2 readings of weight and whose first fast and weight records were contemporaneous were included in the weight loss analysis. Fasting was quantified as extended fasting hours (EFH; hours beyond 12 in a fast) averaged per day (EFH per day). Retention was modeled using a Cox proportional hazards regression. Weight loss was analyzed using linear regression.

RESULTS

A total of 792,692 users were followed for retention based on 26 million recorded fasts. Of these, 132,775 (16.7%) users were retained at 13 weeks, 54,881 (6.9%) at 26 weeks, and 16,478 (2.1%) at 52 weeks, allowing 4 consecutive weeks of inactivity. The survival analysis using Cox regression indicated that retention was positively associated with age and exercise and negatively associated with stress and smoking. Weight loss in the qualifying cohort (n=161,346) was strongly correlated with starting BMI and EFH per day, which displayed a positive interaction. Users with a BMI ≥40 kg/m lost 13.9% of their starting weight by 52 weeks versus a slight weight gain on average for users with starting BMI <23 kg/m. EFH per day was an approximately linear predictor of weight loss. By week 26, users lost over 1% of their starting weight per EFH per day on average. The regression analysis using all variables was highly predictive of weight change at 26 weeks (R=0.334) with starting BMI and EFH per day as the most significant predictors.

CONCLUSIONS

IF with LIFE mobile apps appears to be a sustainable approach to weight reduction in the overweight and obese population. Healthy weight and underweight individuals do not lose much weight on average, even with extensive fasting. Users who are obese lose substantial weight over time, with more weight loss in those who fast more.

摘要

背景

间歇性禁食(IF)是一种越来越受欢迎的饮食控制方法,侧重于进食时间,而不是热量摄入的数量和内容。IF 实践者通常试图改善他们的体重和其他健康因素。数以百万计的实践者已经转向专门设计的移动应用程序来帮助他们跟踪和遵守禁食,并监测体重和其他生物特征的变化。

目的

本研究旨在通过 2 种 IF 移动应用程序的用户来量化用户保留率、禁食模式和体重减轻情况。我们还试图描述和建模起始 BMI、禁食量、体重跟踪频率以及其他人口统计学因素与保留率和体重变化的相关性。

方法

我们收集了 LIFE Fasting Tracker 和 LIFE Extend 应用程序中 2018 年至 2020 年期间年龄在 18-100 岁之间的成年用户的身高、体重、禁食和人口统计学数据。基于记录的禁食次数,最长可达 52 周的保留率进行了量化,并与用户人口统计学因素相关联。提供身高和至少 2 次体重读数且首次禁食和体重记录同时进行的用户被纳入体重减轻分析。禁食时间以每天(平均每天禁食时间)超过 12 小时的延长禁食时间(EFH)进行量化。使用 Cox 比例风险回归模型对保留率进行建模。使用线性回归分析体重减轻情况。

结果

共有 792692 名用户根据 2600 万次记录的禁食进行了保留率随访。其中,132775 名(16.7%)用户在 13 周时保持保留,54881 名(6.9%)在 26 周时保持保留,16478 名(2.1%)在 52 周时保持保留,允许连续 4 周不活动。使用 Cox 回归的生存分析表明,保留率与年龄和运动呈正相关,与压力和吸烟呈负相关。在符合条件的队列(n=161346)中,体重减轻与起始 BMI 和平均每天 EFH 呈强相关性,且存在正交互作用。BMI≥40 kg/m2的患者在 52 周时体重减轻了起始体重的 13.9%,而 BMI<23 kg/m2的患者平均体重略有增加。EFH 每天是体重减轻的近似线性预测因子。到第 26 周时,用户平均每天每 EFH 减少 1%以上的起始体重。使用所有变量的回归分析对 26 周时的体重变化具有高度预测性(R=0.334),起始 BMI 和平均每天 EFH 是最重要的预测因子。

结论

使用 LIFE 移动应用程序进行 IF 似乎是超重和肥胖人群减轻体重的可持续方法。健康体重和体重不足的个体平均不会减轻很多体重,即使禁食时间很长。随着时间的推移,肥胖患者会减轻大量体重,禁食时间更长的患者体重减轻更多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d2/9579929/46a9be00d4fd/mhealth_v10i10e35896_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验