储存脂质的代谢循环促进酵母中角鲨烯的生物合成。
Metabolic recycling of storage lipids promotes squalene biosynthesis in yeast.
作者信息
Son So-Hee, Kim Jae-Eung, Moon Soo Young, Jang In-Seung, Yu Byung Jo, Lee Ju Young
机构信息
Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
出版信息
Biotechnol Biofuels Bioprod. 2022 Oct 12;15(1):108. doi: 10.1186/s13068-022-02208-9.
BACKGROUND
Metabolic rewiring in microbes is an economical and sustainable strategy for synthesizing valuable natural terpenes. Terpenes are the largest class of nature-derived specialized metabolites, and many have valuable pharmaceutical or biological activity. Squalene, a medicinal terpene, is used as a vaccine adjuvant to improve the efficacy of vaccines, including pandemic coronavirus disease 2019 (COVID-19) vaccines, and plays diverse biological roles as an antioxidant and anticancer agent. However, metabolic rewiring interferes with inherent metabolic pathways, often in a way that impairs the cellular growth and fitness of the microbial host. In particular, as the key starting molecule for producing various compounds including squalene, acetyl-CoA is involved in numerous biological processes with tight regulation to maintain metabolic homeostasis, which limits redirection of metabolic fluxes toward desired products.
RESULTS
In this study, focusing on the recycling of surplus metabolic energy stored in lipid droplets, we show that the metabolic recycling of the surplus energy to acetyl-CoA can increase squalene production in yeast, concomitant with minimizing the metabolic interferences in inherent pathways. Moreover, by integrating multiple copies of the rate-limiting enzyme and implementing N-degron-dependent protein degradation to downregulate the competing pathway, we systematically rewired the metabolic flux toward squalene, enabling remarkable squalene production (1024.88 mg/L in a shake flask). Ultimately, further optimization of the fed-batch fermentation process enabled remarkable squalene production of 6.53 g/L.
CONCLUSIONS
Our demonstration of squalene production via engineered yeast suggests that plant- or animal-based supplies of medicinal squalene can potentially be complemented or replaced by industrial fermentation. This approach will also provide a universal strategy for the more stable and sustainable production of high-value terpenes.
背景
微生物中的代谢重编程是合成有价值的天然萜类化合物的一种经济且可持续的策略。萜类化合物是自然界中最大的一类天然衍生的特殊代谢产物,许多具有重要的药用或生物学活性。角鲨烯是一种药用萜类化合物,用作疫苗佐剂以提高疫苗的效力,包括2019年大流行性冠状病毒病(COVID-19)疫苗,并且作为抗氧化剂和抗癌剂发挥多种生物学作用。然而,代谢重编程会干扰固有的代谢途径,通常以损害微生物宿主的细胞生长和适应性的方式进行。特别是,作为生产包括角鲨烯在内的各种化合物的关键起始分子,乙酰辅酶A参与众多生物过程,且受到严格调控以维持代谢稳态,这限制了代谢通量向所需产物的重新定向。
结果
在本研究中,我们聚焦于储存于脂滴中的过剩代谢能量的循环利用,结果表明将过剩能量代谢循环为乙酰辅酶A可增加酵母中角鲨烯的产量,同时最大限度地减少对固有途径的代谢干扰。此外,通过整合限速酶的多个拷贝并实施N端规则依赖性蛋白质降解以下调竞争途径,我们系统地将代谢通量重定向至角鲨烯,实现了显著的角鲨烯产量(摇瓶中为1024.88 mg/L)。最终,对补料分批发酵过程的进一步优化实现了6.53 g/L的显著角鲨烯产量。
结论
我们通过工程酵母生产角鲨烯的示范表明,药用角鲨烯基于植物或动物的供应可能会被工业发酵所补充或替代。这种方法还将为更稳定和可持续地生产高价值萜类化合物提供一种通用策略。